Finite size mean-field models

作者: M Fannes , C Vandenplas

DOI: 10.1088/0305-4470/39/45/001

关键词: QuantumQuantum mechanicsQuantum systemGround stateSpinsSpin statesMean field theoryInvariant (physics)Mathematics

摘要: We characterize the two-site marginals of exchangeable states a system quantum spins in terms simple positivity condition. This result is used two applications. first show that distance between permutation invariant on N and order 1/N. The second application relates mean ground state energy mean-field model composite interacting through product pair interaction with energies components.

参考文章(15)
Bruno de Finetti, La prévision : ses lois logiques, ses sources subjectives Annales de l'institut Henri Poincaré. ,vol. 7, pp. 1- 68 ,(1937)
Isaac L. Chuang, Michael A. Nielsen, Quantum Computation and Quantum Information ,(2000)
A. S. Holevo, M. Fukuda, On Weyl-covariant channels arXiv: Quantum Physics. ,(2008)
Reinhard F. Werner, Remarks on a quantum state extension problem Letters in Mathematical Physics. ,vol. 19, pp. 319- 326 ,(1990) , 10.1007/BF00429951
Erling Størmer, Symmetric states of infinite tensor products of C*-algebras Journal of Functional Analysis. ,vol. 3, pp. 48- 68 ,(1969) , 10.1016/0022-1236(69)90050-0
Christopher A. Fuchs, Rüdiger Schack, Petra F. Scudo, De Finetti representation theorem for quantum-process tomography Physical Review A. ,vol. 69, pp. 062305- ,(2004) , 10.1103/PHYSREVA.69.062305
Julien Vidal, Rémy Mosseri, Jorge Dukelsky, Entanglement in a first-order quantum phase transition Physical Review A. ,vol. 69, pp. 054101- ,(2004) , 10.1103/PHYSREVA.69.054101
Robert König, Renato Renner, A de Finetti representation for finite symmetric quantum states Journal of Mathematical Physics. ,vol. 46, pp. 122108- ,(2005) , 10.1063/1.2146188
Edwin Hewitt, Leonard J. Savage, Symmetric measures on Cartesian products Transactions of the American Mathematical Society. ,vol. 80, pp. 470- 501 ,(1955) , 10.1090/S0002-9947-1955-0076206-8
Julien Vidal, Guillaume Palacios, Rémy Mosseri, Entanglement in a second-order quantum phase transition Physical Review A. ,vol. 69, pp. 022107- ,(2004) , 10.1103/PHYSREVA.69.022107