Remarks on a quantum state extension problem

作者: Reinhard F. Werner

DOI: 10.1007/BF00429951

关键词:

摘要: The problem is considered of finding, for a given pair states on C *-algebras A 1 ⊗ A 2 and A 3, joint extension to A 3. fact that, in contrast classical probability, such an may fail exist, related the that different convex decompositions same quantum state need not have common refinement. Improved necessary criteria extensibility terms Bell's inequalities are derived, compared sufficient criteria, as well entropic bounds simplest case.

参考文章(8)
G. A. Raggio, R. F. Werner, Quantum Statistical Mechanics of General Mean Field Systems Helvetica Physica Acta. ,vol. 62, pp. 980- 1003 ,(1989)
John F. Clauser, Michael A. Horne, Abner Shimony, Richard A. Holt, Proposed Experiment to Test Local Hidden Variable Theories. Physical Review Letters. ,vol. 23, pp. 880- 884 ,(1969) , 10.1103/PHYSREVLETT.23.880
Reinhard F. Werner, An application of Bell's inequalities to a quantum state extension problem Letters in Mathematical Physics. ,vol. 17, pp. 359- 363 ,(1989) , 10.1007/BF00399761
J F Clauser, A Shimony, Bell's theorem. Experimental tests and implications Reports on Progress in Physics. ,vol. 41, pp. 1881- 1927 ,(1978) , 10.1088/0034-4885/41/12/002
Elliott H. Lieb, Mary Beth Ruskai, Proof of the strong subadditivity of quantum‐mechanical entropy Journal of Mathematical Physics. ,vol. 14, pp. 1938- 1941 ,(1973) , 10.1063/1.1666274
Stephen J. Summers, Reinhard Werner, Maximal violation of Bell's inequalities for algebras of observables in tangent spacetime regions Annales De L Institut Henri Poincare-physique Theorique. ,vol. 49, pp. 215- 243 ,(1988)