Two-Weight Norm Inequalities for the Fourier Transform

作者: J. Michael Wilson

DOI: 10.1007/978-4-431-68168-7_20

关键词: MathematicsNorm (mathematics)Fourier transformConvolution theoremMellin transformCombinatoricsFractional Fourier transformHartley transform

摘要: In this short talk we shall give two (trivial) necessary and similar-looking sufficient conditions on non-negative weights V W for the inequality $$ {\smallint _{{R^d}}}{\left| {f(x)} \right|^2}Vdx \leqslant {\hat f(\xi )} \right|^2}Wd\xi $$ (1) to hold all \( f \in C_0^\infty ({R^d}) \) .

参考文章(2)
Alberto P Calderón, An atomic decomposition of distributions in parabolic Hp spaces Advances in Mathematics. ,vol. 25, pp. 216- 225 ,(1977) , 10.1016/0001-8708(77)90074-3
J. Michael Wilson, Weighted norm inequalities for the continuous square function Transactions of the American Mathematical Society. ,vol. 314, pp. 661- 692 ,(1989) , 10.1090/S0002-9947-1989-0972707-9