Weighted norm inequalities for the continuous square function

作者: J. Michael Wilson

DOI: 10.1090/S0002-9947-1989-0972707-9

关键词:

摘要: We prove new weighted norm inequalities for real-variable analogues of the Lusin area function. apply our results to obtain new: (i) singular integral operators; (ii) Sobolev inequalities; (iii) eigenvalue estimates degenerate Schrodinger operators.

参考文章(16)
Benjamin Muckenhoupt, Weighted Norm Inequalities for Classical Operators Birkhäuser Basel. pp. 265- 283 ,(1974) , 10.1007/978-3-0348-5991-2_20
Akihito Uchiyama, The Fefferman-Stein decomposition of smooth functions and its application to $H^{p}({\bf R}^{n})$. Pacific Journal of Mathematics. ,vol. 115, pp. 217- 255 ,(1984) , 10.2140/PJM.1984.115.217
J. Michael Wilson, Weighted inequalities for the dyadic square function without dyadic A Duke Mathematical Journal. ,vol. 55, pp. 19- 49 ,(1987) , 10.1215/S0012-7094-87-05502-5
Charles L. Fefferman, the uncertainty principle Bulletin of the American Mathematical Society. ,vol. 9, pp. 129- 206 ,(1983) , 10.1090/S0273-0979-1983-15154-6
John B. Garnett, Bounded Analytic Functions ,(2010)
Douglas S. Kurtz, Littlewood-Paley and multiplier theorems on weighted ^{} spaces Transactions of the American Mathematical Society. ,vol. 259, pp. 235- 254 ,(1980) , 10.1090/S0002-9947-1980-0561835-X
J. Michael Wilson, A sharp inequality for the square function Duke Mathematical Journal. ,vol. 55, pp. 879- 887 ,(1987) , 10.1215/S0012-7094-87-05542-6
S. Y. A. Chang, J. M. Wilson, T. H. Wolff, Some weighted norm inequalities concerning the Schrödinger operators. Commentarii Mathematici Helvetici. ,vol. 60, pp. 217- 246 ,(1985) , 10.1007/BF02567411