Local decay of scattering solutions to Schrödinger's equation

作者: Jeffrey Rauch

DOI: 10.1007/BF01609491

关键词: Orthogonal complementScatteringCombinatoricsEigenvalues and eigenvectorsSchrödinger's catDiscrete setHamiltonian (quantum mechanics)MathematicsMathematical physicsStatistical and Nonlinear Physics

摘要: The main theorem asserts that ifH=Δ+gV is a Schrodinger Hamiltonian with short rangeV, φeL compact 2 (IR3), andR>0, then ‖exp(iHt)Π S φ‖ L 2 (|x|

参考文章(12)
Barry Simon, Michael Reed, Methods of Modern Mathematical Physics ,(1972)
P.D Lax, R.S Phillips, Scattering Theory for Dissipative Hyperbolic Systems Journal of Functional Analysis. ,vol. 14, pp. 1- 34 ,(1973) , 10.1016/0022-1236(73)90049-9
C.L Dolph, J.B McLeod, D Thoe, THE ANALYTIC CONTINUATION OF THE RESOLVENT KERNEL AND SCATTERING OPERATOR ASSOCIATED WITH THE SCHROEDINGER OPERATOR. Journal of Mathematical Analysis and Applications. ,vol. 16, pp. 311- 332 ,(1966) , 10.1016/0022-247X(66)90174-0
Ira W. Herbst, Unitary equivalence of stark Hamiltonians Mathematische Zeitschrift. ,vol. 155, pp. 55- 70 ,(1977) , 10.1007/BF01322607
Tosio Kato, Wave Operators and Similarity for Some Non-selfadjoint Operators Mathematische Annalen. ,vol. 162, pp. 258- 279 ,(1966) , 10.1007/978-3-642-85997-7_16
Shmuel Agmon, Spectral properties of Schrödinger operators and scattering theory Annali Della Scuola Normale Superiore Di Pisa-classe Di Scienze. ,vol. 2, pp. 151- 218 ,(1975)
Jeffrey Rauch, Asymptotic behavior of solutions to hyperbolic partial differential equations with zero speeds Communications on Pure and Applied Mathematics. ,vol. 31, pp. 431- 480 ,(1978) , 10.1002/CPA.3160310404