Dispersive estimates for matrix Schr\"{o}dinger operators in dimension two

作者: M. Burak Erdoğan , William R. Green

DOI: 10.3934/DCDS.2013.33.4473

关键词:

摘要: We consider the non-selfadjoint operator [\cH = [{array}{cc} -\Delta + \mu-V_1 & -V_2 V_2 \Delta - \mu V_1 {array}]] where $\mu>0$ and $V_1,V_2$ are real-valued decaying potentials. Such operators arise when linearizing a focusing NLS equation around standing wave. Under natural spectral assumptions we obtain $L^1(\R^2)\times L^1(\R^2)\to L^\infty(\R^2)\times L^\infty(\R^2)$ dispersive decay estimates for evolution $e^{it\cH}P_{ac}$. also following weighted estimate $$ \|w^{-1} e^{it\cH}P_{ac}f\|_{L^\infty(\R^2)\times L^\infty(\R^2)}\les \f1{|t|\log^2(|t|)} \|w f\|_{L^1(\R^2)\times L^1(\R^2)},\,\,\,\,\,\,\,\, |t| >2, with $w(x)=\log^2(2+|x|)$.

参考文章(52)
P. D. Hislop, I. M. Sigal, Introduction to Spectral Theory Springer New York. ,(1996) , 10.1007/978-1-4612-0741-2
Arne Jensen, Tosio Kato, Spectral properties of Schrödinger operators and time-decay of the wave functions Duke Mathematical Journal. ,vol. 46, pp. 583- 611 ,(1979) , 10.1215/S0012-7094-79-04631-3
Tetsu Mizumachi, Asymptotic stability of small solitons for 2D Nonlinear Schrödinger equations with potential Journal of Mathematics of Kyoto University. ,vol. 47, pp. 599- 620 ,(2007) , 10.1215/KJM/1250281026
Wilhelm Schlag, Stable manifolds for an orbitally unstable NLS arXiv: Analysis of PDEs. ,(2004)
Fernando Cardoso, Claudio Cuevas, Georgi Vodev, Dispersive estimates for the Schrodinger equation in dimensions four and five Asymptotic Analysis. ,vol. 62, pp. 125- 145 ,(2009) , 10.3233/ASY-2009-0916
Jeffrey Rauch, Local decay of scattering solutions to Schrödinger's equation Communications in Mathematical Physics. ,vol. 61, pp. 149- 168 ,(1978) , 10.1007/BF01609491
Ricardo Weder, Center Manifold for Nonintegrable Nonlinear Schrödinger Equations on the Line Communications in Mathematical Physics. ,vol. 215, pp. 343- 356 ,(2000) , 10.1007/S002200000298
F. Gesztesy, C. K.R.T. Jones, Y. Latushkin, M. Stanislavova, A spectral mapping theorem and invariant manifolds for nonlinear Schrödinger equations Indiana University Mathematics Journal. ,vol. 49, pp. 221- 243 ,(2000) , 10.1512/IUMJ.2000.49.1838
M. B. Erdogan, W. R. Green, Dispersive Estimates for the Schrödinger Equation for Potentials in Odd Dimensions International Mathematics Research Notices. ,vol. 2010, pp. 2532- 2565 ,(2010) , 10.1093/IMRN/RNP221
W. Schlag, Dispersive Estimates for Schrödinger Operators in Dimension Two Communications in Mathematical Physics. ,vol. 257, pp. 87- 117 ,(2005) , 10.1007/S00220-004-1262-9