Associated Varieties and Unipotent Representations

作者: David A. Vogan

DOI: 10.1007/978-1-4612-0455-8_17

关键词: NilpotentMathematicsNilpotent orbitLie algebraMaximal compact subgroupPrime idealUnipotentPoisson algebraPure mathematicsLie group

摘要: Suppose G ℝ is a semisimple Lie group. The philosophy of coadjoint orbits, as propounded by Kirillov and Kostant, suggests that unitary rep-resentations are closely related to the orbits on dual \( \mathfrak{g}_{\mathbb{R}}^{ * } \) algebra g ℝ. One knows how attach representations but methods used (which rely existence nice “polarizing subalgebras” g) cannot be applied most nilpotent orbits.

参考文章(22)
Miles Reid, Hideyuki Matsumura, Commutative Ring Theory ,(1989)
Igorʹ Rostislavovich Shafarevich, Basic algebraic geometry ,(1974)
Jiro SEKIGUCHI, Remarks on real nilpotent orbits of a symmetric pair Journal of The Mathematical Society of Japan. ,vol. 39, pp. 127- 138 ,(1987) , 10.2969/JMSJ/03910127
B. Kostant, S. Rallis, Orbits and Representations Associated with Symmetric Spaces American Journal of Mathematics. ,vol. 93, pp. 753- ,(1971) , 10.2307/2373470
SigurĐur Helgason, Differential operators on homogeneous spaces Acta Mathematica. ,vol. 102, pp. 239- 299 ,(1959) , 10.1007/BF02564248
Michel Duflo, Théorie de Mackey pour les groupes de Lie algébriques Acta Mathematica. ,vol. 149, pp. 153- 213 ,(1982) , 10.1007/BF02392353