FINITE-SIZE SCALING IN THE P-STATE MEAN-FIELD POTTS GLASS : A MONTE CARLO INVESTIGATION

作者: O. Dillmann , W. Janke , K. Binder

DOI: 10.1023/A:1023043602398

关键词: MaximaCombinatoricsPartition function (mathematics)Mean field theoryOrder (ring theory)MathematicsScalingMagnetizationState (functional analysis)Orientational glass

摘要: The p-state mean-field Potts glass with bimodal bond distribution (±J) is studied by Monte Carlo simulations, both for p = 3 and 6 states, system sizes from N 5 to 120 spins, considering particularly the finite-size scaling behavior at exactly known transition temperature T c. It shown that moments q (k) of spin-glass order parameter satisfy a simple behavior, $$q^{(k)} \alpha N^{--k/3} \tilde f_k \{ N^{1/3} (1--T/T_c )\} ,{\text{ }}k 1,2,3,...,\tilde $$ being appropriate function T temperature. Also specific heat maxima have similar $$c_V^{\max } {\text{ }}const--N^{--1/3} , while magnetization scale as $$m^{(k)} N^{--k/2} . approach positions T max these T c → ∞ nonmonotonic. For results are compatible first-order transition, (q jump)k but since q jump rather small, ∝ N -k/3 also data. Thus no firm conclusions on can be drawn. c V max behave qualitatively in same way 3, consistent prediction there latent heat. A speculative phenomenological discussion such transitions given. small (N ≤15 ≤ 12 6) data compared exact partition calculations, excellent agreement found. We discuss ratios $$R_x \equiv [(\langle X\rangle _T - [\langle ]_{{\text{av}}} )^2 /[\langle ]_{{\text{av}}}^2 various quantities X, test possible lack self-averaging

参考文章(28)
C.M. Fortuin, P.W. Kasteleyn, On the random-cluster model: I. Introduction and relation to other models Physica D: Nonlinear Phenomena. ,vol. 57, pp. 536- 564 ,(1972) , 10.1016/0031-8914(72)90045-6
F. Y. Wu, The Potts model Reviews of Modern Physics. ,vol. 54, pp. 235- 268 ,(1982) , 10.1103/REVMODPHYS.54.235
Daniel L. Stein, H. Richard Leuchtag, Spin Glasses And Biology ,(1992)
M. Mezard, G. Parisi, M. A. Virasoro, David J. Thouless, Spin Glass Theory and Beyond ,(1986)
BO Peters, Burkhard Dünweg, K Binder, M d'Onorio de Meo, K Vollmayr, Finite-size scaling in the p-state mean-field Potts glass: exact statistical mechanics for small samples Journal of Physics A. ,vol. 29, pp. 3503- 3519 ,(1996) , 10.1088/0305-4470/29/13/020
Alan M. Ferrenberg, D. P. Landau, K. Binder, Statistical and systematic errors in Monte Carlo sampling Journal of Statistical Physics. ,vol. 63, pp. 867- 882 ,(1991) , 10.1007/BF01029988
D. J. Gross, I. Kanter, H. Sompolinsky, Mean-field theory of the Potts glass. Physical Review Letters. ,vol. 55, pp. 304- 307 ,(1985) , 10.1103/PHYSREVLETT.55.304