Proof of Stembridge’s conjecture on stability of Kronecker coefficients

作者: Steven V Sam , Andrew Snowden

DOI: 10.1007/S10801-015-0622-1

关键词: Kronecker deltaKronecker's theoremKronecker productStability (learning theory)CombinatoricsFinitely-generated abelian groupConjectureDuality (mathematics)Kronecker symbolMathematics

摘要: We prove a conjecture of Stembridge concerning stability Kronecker coefficients that vastly generalizes Murnaghan's theorem. The main idea is to identify the sequences in question with Hilbert functions modules over finitely generated algebras. proof only uses Schur-Weyl duality and Borel-Weil theorem does not rely on any existing work coefficients.

参考文章(22)
F. D. Murnaghan, The Analysis of the Kronecker Product of Irreducible Representations of the Symmetric Group American Journal of Mathematics. ,vol. 60, pp. 761- ,(1938) , 10.2307/2371610
Christopher Woodward, Terence Tao, Allen Knutson, The honeycomb model of GL(n) tensor products II: Puzzles determine facets of the Littlewood-Richardson cone arXiv: Combinatorics. ,(2001)
Rosa Orellana, Emmanuel Briand, Mercedes Rosas, Reduced Kronecker coefficients and counter-examples to Mulmuley's strong saturation conjecture SH arXiv: Combinatorics. ,(2008)
Benson Farb, Thomas Church, Jordan S. Ellenberg, FI-modules and stability for representations of symmetric groups Duke Mathematical Journal. ,vol. 164, pp. 1833- 1910 ,(2015) , 10.1215/00127094-3120274
Steven V Sam, Andrew Snowden, GL-equivariant modules over polynomial rings in infinitely many variables Transactions of the American Mathematical Society. ,vol. 368, pp. 1097- 1158 ,(2015) , 10.1090/TRAN/6355
Velleda Baldoni, Michele Vergne, Multiplicity of compact group representations and applications to Kronecker coefficients arXiv: Representation Theory. ,(2015)
Steven V Sam, Andrew Snowden, Introduction to twisted commutative algebras arXiv: Commutative Algebra. ,(2012)
Allen Knutson, Terence Tao, Christopher Woodward, The honeycomb model of _{}(ℂ) tensor products II: Puzzles determine facets of the Littlewood-Richardson cone Journal of the American Mathematical Society. ,vol. 17, pp. 19- 48 ,(2003) , 10.1090/S0894-0347-03-00441-7
George R. Kempf, On the collapsing of homogeneous bundles Inventiones Mathematicae. ,vol. 37, pp. 229- 239 ,(1976) , 10.1007/BF01390321