Obstructions to combinatorial formulas for plethysm

作者: Mateusz Michalek , Thomas Kahle

DOI:

关键词:

摘要: Motivated by questions of Mulmuley and Stanley we investigate quasi-polynomials arising in formulas for plethysm. We demonstrate, on the examples $S^3(S^k)$ $S^k(S^3)$, that these need not be counting functions inhomogeneous polytopes dimension equal to degree quasi-polynomial. It follows are not, general, lattice points any scaled convex bodies, even when restricted single rays. Our results also apply special rectangular Kronecker coefficients.

参考文章(21)
Steven V Sam, Andrew Snowden, Proof of Stembridge’s conjecture on stability of Kronecker coefficients Journal of Algebraic Combinatorics. ,vol. 43, pp. 1- 10 ,(2016) , 10.1007/S10801-015-0622-1
Velleda Baldoni, Michele Vergne, Multiplicity of compact group representations and applications to Kronecker coefficients arXiv: Representation Theory. ,(2015)
Richard P. Stanley, Combinatorics and commutative algebra ,(1983)
Mateusz Michałek, Laurent Manivel, Secants of minuscule and cominuscule minimal orbits Linear Algebra and its Applications. ,vol. 481, pp. 288- 312 ,(2015) , 10.1016/J.LAA.2015.04.027
Allen Knutson, Terence Tao, The honeycomb model of _{}(ℂ) tensor products I: Proof of the saturation conjecture Journal of the American Mathematical Society. ,vol. 12, pp. 1055- 1090 ,(1999) , 10.1090/S0894-0347-99-00299-4
Paul-Emile Paradan, Michèle Vergne, Witten non abelian localization for equivariant K-theory, and the [Q,R]=0 theorem arXiv: Symplectic Geometry. ,(2015)
Mateusz Michalek, Thomas Kahle, Plethysm and lattice point counting arXiv: Representation Theory. ,(2014) , 10.1007/S10208-015-9275-7