Witten non abelian localization for equivariant K-theory, and the [Q,R]=0 theorem

作者: Paul-Emile Paradan , Michèle Vergne

DOI:

关键词:

摘要: The purpose of the present paper is two-fold. First, we obtain a non-abelian localization theorem when M any even dimensional compact manifold : following an idea E. Witten, deform elliptic symbol associated to Clifford bundle on with vector field moment map. Second, use this general approach reprove [Q,R] = 0 Meinrenken-Sjamaar in Hamiltonian case, and mild generalizations almost complex manifolds. This can be used geometric description multiplicities index spin^c Dirac operators (see preprint arXiv:1411.7772).

参考文章(37)
Victor Guillemin, Shlomo Sternberg, A Normal Form for the Moment Map Springer Netherlands. pp. 161- 175 ,(1984) , 10.1007/978-94-015-6874-6_11
Maxim Braverman, The index theory on non-compact manifolds with proper group action Journal of Geometry and Physics. ,vol. 98, pp. 275- 284 ,(2015) , 10.1016/J.GEOMPHYS.2015.08.014
Eckhard Meinrenken, On Riemann-Roch Formulas for Multiplicities Journal of the American Mathematical Society. ,vol. 9, pp. 373- 389 ,(1996) , 10.1090/S0894-0347-96-00197-X
Arkady Berenstein, Reyer Sjamaar, Coadjoint orbits, moment polytopes, and the Hilbert-Mumford criterion Journal of the American Mathematical Society. ,vol. 13, pp. 433- 466 ,(2000) , 10.1090/S0894-0347-00-00327-1
Michael Francis Atiyah, Elliptic operators and compact groups ,(1974)
Paul-Emile Paradan, Michele Vergne, Multiplicities of equivariant Spin$^c$ Dirac operators arXiv: Differential Geometry. ,(2014)
Nicolas Ressayre, Reductions for branching coefficients arXiv: Algebraic Geometry. ,(2011)
Peter Hochs, Varghese Mathai, Quantising proper actions on Spin$^c$-manifolds arXiv: Differential Geometry. ,(2014) , 10.4310/AJM.2017.V21.N4.A2