Real Even Symmetric Ternary Forms

作者: William R. Harris

DOI: 10.1006/JABR.1998.8012

关键词: Element (category theory)Ternary operationElementary symmetric polynomialMathematicsCombinatoricsSymmetric polynomialPower sum symmetric polynomialPositive-definite matrixDegree (graph theory)Symmetric functionAlgebra and Number Theory

摘要: Let Sen, m denote the set of all real symmetric forms degree = 2d. PSen, and ΣSen, cones positive semidefinite (psd) sum squares (sos) elements m, respectively. For 2 or 4, these coincide. 6, they do not, were analyzed in Even Symmetric Sextics, by M. D. Choi, T. Y. Lam, B. Reznick (1987, Math. Z.195, pp. 559–580). We present an easily checked, necessary sufficient condition for even n-ary octic to be 8 ternary decic PSe3, 10; we also show that there is no corresponding greater than 10. We proceed discuss extremal This leads question: how many have sos representations? prove ΣSe3, demonstrate 10\ΣSe3, 10 nonempty, providing new examples psd which are not sos. We give a graphic representation indicates whether element Se3, psd. interpret as inequalities; particular, polynomial inequalities ≤ 5 satisfied sides triangle.

参考文章(8)
Man-Duen Choi, Manfred Knebusch, Tsit-Yuen Lam, Bruce Reznick, Transversal zeros and positive semidefinite forms Springer Berlin Heidelberg. pp. 273- 298 ,(1982) , 10.1007/BFB0062259
M. D. Choi, T. Y. Lam, Bruce Reznick, Even symmetric sextics Mathematische Zeitschrift. ,vol. 195, pp. 559- 580 ,(1987) , 10.1007/BF01166704
Man-Duen Choi, Tsit-Yuen Lam, Bruce Reznick, Real zeros of positive semidefinite forms. I Mathematische Zeitschrift. ,vol. 171, pp. 1- 26 ,(1980) , 10.1007/BF01215051
Man-Duen Choi, Tsit-Yuen Lam, Extremal positive semidefinite forms Mathematische Annalen. ,vol. 231, pp. 1- 18 ,(1977) , 10.1007/BF01360024
H. D. Ursell, Inequalities Between Sums of Powers Proceedings of the London Mathematical Society. ,vol. s3-9, pp. 432- 450 ,(1959) , 10.1112/PLMS/S3-9.3.432
David Hilbert, Über die Darstellung definiter Formen als Summe von Formenquadraten Algebra · Invariantentheorie · Geometrie. ,vol. 32, pp. 154- 161 ,(1933) , 10.1007/978-3-642-52012-9_10
Robert John Walker, Algebraic curves ,(1950)
Hilbert, Ueber die Darstellung definiter Formen als Summen von Formenquadraten Mathematische Annalen. ,vol. 32, pp. 342- 350 ,(1888)