Deciding positivity of multisymmetric polynomials

作者: Paul Görlach , Cordian Riener , Tillmann Weißer

DOI: 10.1016/J.JSC.2015.10.001

关键词:

摘要: The question how to certify non-negativity of a polynomial function lies at the heart Real Algebra and also has important applications Optimization. In this article we investigate in context multisymmetric polynomials. setting generalize characterization non-negative symmetric polynomials given Timofte (2003), Riener (2012) by adapting method proof developed (2013). One particular case where our results can be applied is certifying that (multi-)symmetric defines convex function. As direct corollary main result deduce fixed degree it possible derive test for convexity which makes use special structure follows are able drastically simplify algorithmic complexity presence symmetry. This not expected general (i.e. non-symmetric) case, known testing NP-hard already 4 (Ahmadi et al., 2013).

参考文章(26)
Bernd Sturmfels, Solving Systems of Polynomial Equations CBMS Regional Conference Series in Mathematics. ,vol. 97, ,(2002) , 10.1090/CBMS/097
Ludwig. Schläfli, Über die Resultante eines Systemes mehrerer algebraischer Gleichungen : Ein Beitrag zur Theorie der Elimination Denkschriften der Kaiserlichen Akademie der Wissenschaften / Mathematisch-Naturwissenschaftliche Classe. ,vol. 4, pp. 1- 74 ,(1852)
S. Blum, L., Cucker, F., Shub, M., Smale, Complexity and Real Computation ,(1997)
Grigoriy Blekherman, Cordian Riener, Symmetric nonnegative forms and sums of squares arXiv: Optimization and Control. ,(2012)
John N. Tsitsiklis, Alexander Olshevsky, Pablo A. Parrilo, Amir Ali Ahmadi, NP-hardness of deciding convexity of quartic polynomials and related problems Mathematical Programming. ,vol. 137, pp. 453- 476 ,(2013) , 10.1007/S10107-011-0499-2
Francesco Vaccarino, The ring of multisymmetric functions Annales de l’institut Fourier. ,vol. 55, pp. 717- 731 ,(2005) , 10.5802/AIF.2111
William R. Harris, Real Even Symmetric Ternary Forms Journal of Algebra. ,vol. 222, pp. 204- 245 ,(1999) , 10.1006/JABR.1998.8012
Bruce Reznick, Forms derived from the arithmetic-geometric inequality Mathematische Annalen. ,vol. 283, pp. 431- 464 ,(1989) , 10.1007/BF01442738