On the Isotypic Decomposition of Cohomology Modules of Symmetric Semi-algebraic Sets: Polynomial Bounds on Multiplicities

作者: Saugata Basu , Cordian Riener

DOI: 10.1093/IMRN/RNY062

关键词:

摘要: We consider symmetric (under the action of products finite groups) real algebraic varieties and semi-algebraic sets, as well complex in affine projective spaces, defined by polynomials degrees bounded a fixed constant $d$. prove that if Specht module, $\mathbb{S}^\lambda$, appears with positive multiplicity isotypic decomposition cohomology modules such then rank partition $\lambda$ is $O(d)$. This implies polynomial (in dimension ambient space) bound on number modules. Furthermore, we multiplicities those do appear above mentioned We give some applications our methods proving lower bounds defining certain improved Betti numbers images under projections (not necessarily symmetric) improving situations prior results Gabrielov, Vorobjov Zell.

参考文章(25)
J. Bochnak, M. Coste, M-F Roy, Géométrie algébrique réelle Springer-Verlag. ,(1987)
Paul Görlach, Cordian Riener, Tillmann Weißer, Deciding positivity of multisymmetric polynomials Journal of Symbolic Computation. ,vol. 74, pp. 603- 616 ,(2016) , 10.1016/J.JSC.2015.10.001
William Fulton, Joe Harris, Representation Theory: A First Course ,(1991)
Saugata Basu, Richard Pollack, Marie-Françoise Roy, On the Betti numbers of sign conditions Proceedings of the American Mathematical Society. ,vol. 133, pp. 965- 974 ,(2004) , 10.1090/S0002-9939-04-07629-4
R. A. FENN, Algebra and Topology Nature. ,vol. 222, pp. 48- 48 ,(1969) , 10.1038/222048A0
Andrei Gabrielov, Nicolai Vorobjov, Approximation of definable sets by compact families, and upper bounds on homotopy and homology Journal of The London Mathematical Society-second Series. ,vol. 80, pp. 35- 54 ,(2009) , 10.1112/JLMS/JDP006
S. Basu, On Bounding the Betti Numbers and Computing the Euler Characteristic of Semi-Algebraic Sets Discrete and Computational Geometry. ,vol. 22, pp. 1- 18 ,(1999) , 10.1007/PL00009443
Saugata Basu, Dmitrii V. Pasechnik, Marie-Françoise Roy, Computing the Betti numbers of semi-algebraic sets defined by partly quadratic systems of polynomials Journal of Algebra. ,vol. 321, pp. 2206- 2229 ,(2009) , 10.1016/J.JALGEBRA.2008.09.043
Saugata Basu, Richard Pollack, Marie-Françoise Roy, Computing the First Betti Number of a Semi-Algebraic Set Foundations of Computational Mathematics. ,vol. 8, pp. 97- 136 ,(2008) , 10.1007/S10208-007-9001-1
Alexander I. Barvinok, On the Betti numbers of semialgebraic sets defined by few quadratic inequalities Mathematische Zeitschrift. ,vol. 225, pp. 231- 244 ,(1997) , 10.1007/PL00004307