Incremental Graphical Asymptotic Stability for Hybrid Dynamical Systems

作者: Yuchun Li , Ricardo G. Sanfelice

DOI: 10.1007/978-3-319-51298-3_9

关键词: Hybrid systemState (functional analysis)Pure mathematicsZero (complex analysis)Dynamical systems theoryDifferential equationStability (probability)Linear dynamical systemMathematicsExponential stability

摘要: This chapter introduces an incremental asymptotic stability notion for sets of hybrid trajectories \({\mathscr {S}}\). The elements in {S}}\) are functions defined on time domains, which subsets \({\mathbb {R}_{\ge 0}}\times \mathbb {N}\) with a specific structure. For this abstract system, is as the property graphical distance between every pair solutions to system having stable behavior (incremental stability) and approaching zero asymptotically attractivity). Necessary conditions have such properties presented. When generated by systems given terms inclusions, that is, differential equations difference state constraints, further necessary data highlighted. In addition, sufficient involving inclusion Throughout chapter, examples illustrate notions results.

参考文章(21)
George Isac, Sándor Zoltán Németh, Scalar and Asymptotic Scalar Derivatives: Theory and Applications ,(2008)
Andrew R. Teel, Ricardo G. Sanfelice, Rafal Goebel, Hybrid Dynamical Systems: Modeling, Stability, and Robustness ,(2012)
J. J. Benjamin Biemond, Nathan van de Wouw, W. P. Maurice H. Heemels, Hendrik Nijmeijer, Tracking Control for Hybrid Systems With State-Triggered Jumps IEEE Transactions on Automatic Control. ,vol. 58, pp. 876- 890 ,(2013) , 10.1109/TAC.2012.2223351
TOMOMICHI HAGIWARA, GO KURODA, MITUHIKO ARAKI, Popov-type criterion for stability of nonlinear sampled-data systems Automatica. ,vol. 34, pp. 671- 682 ,(1998) , 10.1016/S0005-1098(98)00017-X
Ricardo G. Sanfelice, Rafal Goebel, Andrew R. Teel, Invariance Principles for Hybrid Systems With Connections to Detectability and Asymptotic Stability IEEE Transactions on Automatic Control. ,vol. 52, pp. 2282- 2297 ,(2007) , 10.1109/TAC.2007.910684
Pavithra Prabhakar, Richard M. Murray, Jun Liu, Pre-orders for reasoning about stability properties with respect to input of hybrid systems embedded software. pp. 24- ,(2013) , 10.5555/2555754.2555778
Chunhua Feng, Peiguang Wang, The existence of almost periodic solutions of some delay differential equations Computers & Mathematics with Applications. ,vol. 47, pp. 1225- 1231 ,(2004) , 10.1016/S0898-1221(04)90116-2
Yuchun Li, Sean Phillips, Ricardo G. Sanfelice, Results on incremental stability for a class of hybrid systems conference on decision and control. pp. 3089- 3094 ,(2014) , 10.1109/CDC.2014.7039865
Björn S. Rüffer, Nathan van de Wouw, Markus Mueller, Convergent Systems vs. Incremental Stability Systems & Control Letters. ,vol. 62, pp. 277- 285 ,(2013) , 10.1016/J.SYSCONLE.2012.11.015
Ricardo G. Sanfelice, Laurent Praly, Convergence of Nonlinear Observers on ${\mathbb{R}}^{n}$ With a Riemannian Metric (Part II) IEEE Transactions on Automatic Control. ,vol. 61, pp. 2848- 2860 ,(2016) , 10.1109/TAC.2015.2504483