Convergence of Nonlinear Observers on ${\mathbb{R}}^{n}$ With a Riemannian Metric (Part II)

作者: Ricardo G. Sanfelice , Laurent Praly

DOI: 10.1109/TAC.2015.2504483

关键词:

摘要: In [1], it is established that a convergent observer with an infinite gain margin can be designed for given nonlinear system when Riemannian metric showing the differentially detectable (i.e., Lie derivative of along vector field negative in space tangent to output function level sets) and sets are geodesically convex available. this paper, we propose techniques designing satisfying first property case where strongly infinitesimally observable each time-varying linear resulting from linearization solution satisfies uniform observability property) or (i.e. mapping state derivatives injective immersion) Lagrangian. Also, give results complementary those [1]. particular, provide locally make link existence reduced order observer. Examples illustrating presented.

参考文章(54)
Feng Ye, Semi-Riemannian Geometry Springer Netherlands. pp. 217- 266 ,(2011) , 10.1007/978-94-007-1347-5_8
Alessio Figalli, Cédric Villani, Optimal Transport and Curvature Springer Berlin Heidelberg. pp. 171- 217 ,(2011) , 10.1007/978-3-642-21861-3_4
Nobuhiro Innami, Splitting theorems of riemannian manifolds Compositio Mathematica. ,vol. 47, pp. 237- 247 ,(1982)
Elie Cartan, James Glazebrook, R. Hermann, Geometry of Riemannian spaces ,(1983)
Jaak Vilms, Totally geodesic maps Journal of Differential Geometry. ,vol. 4, pp. 73- 79 ,(1970) , 10.4310/JDG/1214429276
Jean-Paul Gauthier, I. A. K. Kupka, Deterministic Observation Theory and Applications ,(2001)
J. Jouffroy, Some ancestors of contraction analysis conference on decision and control. pp. 5450- 5455 ,(2005) , 10.1109/CDC.2005.1583029