Maximum likelihood estimation of random effects models

作者: Trevor S. Breusch

DOI: 10.1016/0304-4076(87)90010-8

关键词: Applied mathematicsExpectation–maximization algorithmLikelihood principleRestricted maximum likelihoodLikelihood functionMathematicsEstimation theoryMaximum likelihood sequence estimationMonotonic functionStatisticsRandom effects model

摘要: Abstract Iterated GLS has a remarkable property when applied to the random effects model in its usual parameterization. The values for parameter that measures relative variance, obtained through successive iterations, form monotonic sequence. This provides convenient checks multiple maxima of likelihood function and existence local maximum satisfies non-negativity condition.

参考文章(4)
JerryA. Hausman, WilliamE. Taylor, Panel data and unobservable individual effects Journal of Econometrics. ,vol. 16, pp. 155- 155 ,(1981) , 10.1016/0304-4076(81)90085-3