Planforms in three dimensions

作者: Benoit Dionne

DOI: 10.1007/BF00948482

关键词: IsotropyEuclidean geometryEquivariant mapDifferential equationMathematicsPartial differential equationMathematical analysisIrreducible representationSymmetry (geometry)First-order partial differential equation

摘要: The spatially periodic, steady-state solutions to systems of partial differential equations (PDE) are calledplanforms. There already exists a classification the planforms for Euclidean equivariant PDE inR2 (see [6, 7]), In this article we attempt give such inR3. Based on symmetry and spatial periodicity each planform, 59 different found.

参考文章(9)
Willard Miller, Symmetry groups and their applications Academic Press. ,(1972)
Martin Golubitsky, Ian Stewart, David G. Schaeffer, Singularities and groups in bifurcation theory Springer Science+Business Media. ,(1985) , 10.1007/978-1-4612-4574-2
Bifurcation on the hexagonal lattice and the planar Bénard problem Philosophical Transactions of the Royal Society A. ,vol. 308, pp. 617- 667 ,(1983) , 10.1098/RSTA.1983.0018
K. Kirchgässner, Exotische Lösungen des Bénardschen Problems Mathematical Methods in The Applied Sciences. ,vol. 1, pp. 453- 467 ,(1979) , 10.1002/MMA.1670010404
Pascal Chossat, Reiner Lauterbach, Ian Melbourne, Steady-State bifurcation with 0(3)-Symmetry Archive for Rational Mechanics and Analysis. ,vol. 113, pp. 313- 376 ,(1991) , 10.1007/BF00374697
Benoit Dionne, Martin Golubitsky, Planforms in two and three dimensions Zeitschrift für Angewandte Mathematik und Physik. ,vol. 43, pp. 36- 62 ,(1992) , 10.1007/BF00944740
A. Schlüter, D. Lortz, F. Busse, On the stability of steady finite amplitude convection Journal of Fluid Mechanics. ,vol. 23, pp. 129- 144 ,(1965) , 10.1017/S0022112065001271
F. H. Busse, Patterns of convection in spherical shells Journal of Fluid Mechanics. ,vol. 72, pp. 67- 85 ,(1975) , 10.1017/S0022112075002947
P. Chossat, Solutions avec symétrie diédrale dans les problèmes de bifurcation invariants par symétrie sphérique Comptes rendus des séances de l'Académie des sciences. Série 1, Mathématique. ,vol. 297, pp. 639- 642 ,(1983)