Planforms in two and three dimensions

作者: Benoit Dionne , Martin Golubitsky

DOI: 10.1007/BF00944740

关键词:

摘要: When solving systems of PDE with two space dimensions it is often assumed that the solution spatially doubly periodic. This assumption usually made in such as Boussinesq equation or reaction-diffusion equations where have Euclidean invariance. In this article we use group theoretic techniques to determine a large class periodic solutions are forced existence near steady-state bifurcation from translation-invariant equilibrium.

参考文章(14)
M. A. Armstrong, Groups and symmetry ,(1988)
Willard Miller, Symmetry groups and their applications Academic Press. ,(1972)
Martin Golubitsky, Ian Stewart, David G. Schaeffer, Singularities and groups in bifurcation theory Springer Science+Business Media. ,(1985) , 10.1007/978-1-4612-4574-2
Bifurcation on the hexagonal lattice and the planar Bénard problem Philosophical Transactions of the Royal Society A. ,vol. 308, pp. 617- 667 ,(1983) , 10.1098/RSTA.1983.0018
K. Kirchgässner, Exotische Lösungen des Bénardschen Problems Mathematical Methods in The Applied Sciences. ,vol. 1, pp. 453- 467 ,(1979) , 10.1002/MMA.1670010404
Pascal Chossat, Reiner Lauterbach, Ian Melbourne, Steady-State bifurcation with 0(3)-Symmetry Archive for Rational Mechanics and Analysis. ,vol. 113, pp. 313- 376 ,(1991) , 10.1007/BF00374697
Benoit Dionne, Planforms in three dimensions Zeitschrift für Angewandte Mathematik und Physik. ,vol. 44, pp. 673- 694 ,(1993) , 10.1007/BF00948482
F. H. Busse, Patterns of convection in spherical shells Journal of Fluid Mechanics. ,vol. 72, pp. 67- 85 ,(1975) , 10.1017/S0022112075002947
P. Chossat, Solutions avec symétrie diédrale dans les problèmes de bifurcation invariants par symétrie sphérique Comptes rendus des séances de l'Académie des sciences. Série 1, Mathématique. ,vol. 297, pp. 639- 642 ,(1983)