Derivation of dielectric function and inelastic mean free path from photoelectron energy-loss spectra of amorphous carbon surfaces

作者: Denis David , Christian Godet

DOI: 10.1016/J.APSUSC.2016.06.044

关键词: Inelastic mean free pathX-ray photoelectron spectroscopyPlasma oscillationFree electron modelPlasmonElectron energy loss spectroscopySurface plasmon polaritonSurface plasmonAtomic physicsMaterials science

摘要: Abstract Photoelectron Energy Loss Spectroscopy (PEELS) is a highly valuable non destructive tool in applied surface science because it gives access to both chemical composition and electronic properties of surfaces, including the near-surface dielectric function. An algorithm proposed for real materials make full use experimental X-ray photoelectron spectra (XPS). To illustrate capabilities limitations this algorithm, function e( ℏ ω) wide range amorphous carbon (a-C) thin films derived from energy losses measured XPS, using response theory which relates bulk plasmon (BP) loss distribution. Self-consistent separation vs excitations, deconvolution multiple BP evaluation Bethe-Born sensitivity factors distributions are crucial obtain several material parameters: (1) excitation, (2) (3–5 nm depth sensitivity), (3) inelastic mean free path, λP (E0), (4) excitation parameter, (5) effective number NEFF valence electrons participating plasma oscillation. This analysis has been a-C a-C:H grown by physical methods with (sp3/sp2 + sp3) hybridization, optical gap average values. Different assessed accurately remove photoemission peak tail at low (0–10 eV) due many-body interactions during photo-ionization process. The σ + π represents main energy-loss channel a-C; as C atom density decreases, (970 eV) increases 1.22 nm 1.6 nm, assuming cutoff wavenumber given electron model. π-π* σ-σ* transitions observed retrieved discussed (sp3/sp2 + sp3) C hybridization compared literature results.

参考文章(65)
Carel J. van Oss, Interfacial Forces in Aqueous Media ,(2020)
Nigel Marks, Modelling diamond-like carbon with the environment-dependent interaction potential Journal of Physics: Condensed Matter. ,vol. 14, pp. 2901- 2927 ,(2002) , 10.1088/0953-8984/14/11/308
P. Steiner, H. H�chst, S. H�fner, XPS investigation of simple metals European Physical Journal B. ,vol. 30, pp. 129- 143 ,(1978) , 10.1007/BF01320978
L. Calliari, S. Fanchenko, Reflection electron energy loss spectroscopy: role of the Bethe–Born factor Surface and Interface Analysis. ,vol. 44, pp. 1104- 1109 ,(2012) , 10.1002/SIA.4827
N. Pauly, S. Tougaard, Determination of the effective surface region thickness and of Begrenzungs effect Surface Science. ,vol. 603, pp. 2158- 2162 ,(2009) , 10.1016/J.SUSC.2009.04.023
Wolfgang S.M. Werner, Peter Schattschneider, On the energy dissipation process in incoherent electron scattering Journal of Electron Spectroscopy and Related Phenomena. ,vol. 143, pp. 65- 80 ,(2005) , 10.1016/J.ELSPEC.2004.03.011
S. Waidmann, M. Knupfer, J. Fink, B. Kleinsorge, J. Robertson, Electronic structure studies of undoped and nitrogen-doped tetrahedral amorphous carbon using high-resolution electron energy-loss spectroscopy Journal of Applied Physics. ,vol. 89, pp. 3783- 3792 ,(2001) , 10.1063/1.1350999
Christian Godet, Denis David, Hussein Sabbah, Soraya Ababou-Girard, Francine Solal, Bulk and surface plasmon excitations in amorphous carbon measured by core-level photoelectron spectroscopy Applied Surface Science. ,vol. 255, pp. 6598- 6606 ,(2009) , 10.1016/J.APSUSC.2009.02.050