Canonical bases of a coideal subalgebra in $U_q(\mathfrak{sl}_2)$

作者: Keiichi Shigechi

DOI:

关键词: SubalgebraTensor productGenerator (category theory)Action (physics)Pure mathematicsEigenvalues and eigenvectorsEigenfunctionMathematicsAlgebraSymmetry (geometry)Expression (computer science)

摘要: We consider tensor products of finite-dimensional representations a coideal subalgebra in $U_{q}(\mathfrak{sl}_2)$. present an explicit expression for the dual canonical bases through diagrammatic presentation. show that decomposition and action have integral positive properties. As application, we eigensystem generator on bases. provide all eigenvalues obtain eigenfunction largest eigenvalue. The sum components this is conjectured to be equal total number arrangements bishops with certain symmetry.

参考文章(23)
Robert W. Robinson, Counting arrangements of bishops Springer, Berlin, Heidelberg. pp. 198- 214 ,(1976) , 10.1007/BFB0097382
M. Noumi, T. Sugitani, M.S. Dijkhuizen, Multivariable Askey-Wilson Polynomials and Quantum Complex Grassmannians arXiv: Quantum Algebra. ,(1996)
George Lusztig, Introduction to Quantum Groups ,(1993)
Masatoshi Noumi, Tetsuya Sugitani, Quantum symmetric spaces and related q-orthogonal polynomials arXiv: Quantum Algebra. ,(1995)
Keiichi Shigechi, Kazhdan-Lusztig polynomials for the Hermitian symmetric pair $(B_N,A_{N-1})$ arXiv: Representation Theory. ,(2014)
David Kazhdan, George Lusztig, Representations of Coxeter Groups and Hecke Algebras. Inventiones Mathematicae. ,vol. 53, pp. 165- 184 ,(1979) , 10.1007/BF01390031
M. Kashiwara, On crystal bases of the $Q$-analogue of universal enveloping algebras Duke Mathematical Journal. ,vol. 63, pp. 465- 516 ,(1991) , 10.1215/S0012-7094-91-06321-0
Igor B. Frenkel, Mikhail G. Khovanov, Canonical bases in tensor products and graphical calculus for Uq(2) Duke Mathematical Journal. ,vol. 87, pp. 409- 480 ,(1997) , 10.1215/S0012-7094-97-08715-9
Gail Letzter, Symmetric Pairs for Quantized Enveloping Algebras Journal of Algebra. ,vol. 220, pp. 729- 767 ,(1999) , 10.1006/JABR.1999.8015