A Positive integral property on the ground state of the two-boundary Temperley--Lieb Hamiltonian

作者: Keiichi Shigechi

DOI:

关键词:

摘要: We study the two-boundary Temperley--Lieb $O(n)$ loop model on Kazhdan--Lusztig bases of type A and B. obtain explicit expressions ground state Hamiltonian by means a coideal subalgebra $U_q(\mathfrak{sl}_2)$. This possesses positive integral property. conjecture that some components are directly related to an enumeration binary or permutation matrices.

参考文章(40)
Robert W. Robinson, Counting arrangements of bishops Springer, Berlin, Heidelberg. pp. 198- 214 ,(1976) , 10.1007/BFB0097382
Keiichi Shigechi, Canonical bases of a coideal subalgebra in $U_q(\mathfrak{sl}_2)$ arXiv: Mathematical Physics. ,(2014)
A. V. Razumov, Yu. G. Stroganov, Combinatorial nature of ground state vector of O(1) loop model arXiv: Combinatorics. ,(2001)
Keiichi Shigechi, Kazhdan-Lusztig polynomials for the Hermitian symmetric pair $(B_N,A_{N-1})$ arXiv: Representation Theory. ,(2014)
Jan De Gier, Pavel Pyatov, Factorized solutions of Temperley-Lieb qKZ equations on a segment Advances in Theoretical and Mathematical Physics. ,vol. 14, pp. 795- 878 ,(2010) , 10.4310/ATMP.2010.V14.N3.A2
David Kazhdan, George Lusztig, Representations of Coxeter Groups and Hecke Algebras. Inventiones Mathematicae. ,vol. 53, pp. 165- 184 ,(1979) , 10.1007/BF01390031
Igor B. Frenkel, Mikhail G. Khovanov, Canonical bases in tensor products and graphical calculus for Uq(2) Duke Mathematical Journal. ,vol. 87, pp. 409- 480 ,(1997) , 10.1215/S0012-7094-97-08715-9
Gail Letzter, Symmetric Pairs for Quantized Enveloping Algebras Journal of Algebra. ,vol. 220, pp. 729- 767 ,(1999) , 10.1006/JABR.1999.8015
Bruno Nachtergaele, Shannon Starr, Stephen Ng, Ferromagnetic Ordering of Energy Levels for $U_q(\mathfrak{sl}_2)$ Symmetric Spin Chains arXiv: Mathematical Physics. ,(2011) , 10.1007/S11005-011-0538-1
Jan de Gier, Alexander Nichols, The two-boundary Temperley–Lieb algebra Journal of Algebra. ,vol. 321, pp. 1132- 1167 ,(2009) , 10.1016/J.JALGEBRA.2008.10.023