Dense neutron matter with realistic interactions

作者: V.R. Pandharipande

DOI: 10.1016/0375-9474(71)90413-1

关键词: Correlation function (statistical mechanics)Variational methodCluster expansionPhysicsNeutron starComputational physicsNeutronEquation of stateNuclear matterDifferential equationNuclear physics

摘要: Abstract The energy of the neutron gas is studied with Reid and Bressel-Kerman-Rouben soft-core potentials up to a density 4.5 neutrons fm 3 . Very approximate estimates for solid energies are presented also Hamada-Johnston hard-core potential. short-range correlations treated by simple variational method in which cluster expansion expectation value, Jastrow wave function truncated at lowest-order two-body clusters. Healing constraints introduced variation from qualitative comparison Brueckner theory differential equation obtained correlation minimizing energy. effective interaction use uncorrelated functions, given this procedure interpreted Moszkowski-Scott separation method. It shown that calculations may be reasonable soft core potentials, whereas their applicability potential doubtful ϱ ⪆ 0.7 -3 results give an state dense matter order uncertainty it due neutron-neutron short range, useful star structure investigations.

参考文章(13)
Philip J. Siemens, Nuclear-matter reaction matrix Nuclear Physics A. ,vol. 141, pp. 225- 248 ,(1970) , 10.1016/0375-9474(70)90844-4
C.N. Bressel, A.K. Kerman, B. Rouben, Soft-core nucleon-nucleon potential Nuclear Physics A. ,vol. 124, pp. 624- 636 ,(1969) , 10.1016/0375-9474(69)90654-X
Sachiko Tsuruta, A. G. W. Cameron, SOME EFFECTS OF NUCLEAR FORCES ON NEUTRON-STAR MODELS Canadian Journal of Physics. ,vol. 44, pp. 1895- 1922 ,(1966) , 10.1139/P66-157
B. Banerjee, S. M. Chitre, V. K. Garde, Equation of State for Dense Neutron Matter Physical Review Letters. ,vol. 25, pp. 1125- 1128 ,(1970) , 10.1103/PHYSREVLETT.25.1125
Ramamurti Rajaraman, HA Bethe, None, Three-body problem in nuclear matter Reviews of Modern Physics. ,vol. 39, pp. 745- 770 ,(1967) , 10.1103/REVMODPHYS.39.745
J. Nemeth, Donald W. L. Sprung, RELATIVE PROTON NUMBER IN NEUTRON STAR MATTER. Physical Review. ,vol. 176, pp. 1496- 1500 ,(1968) , 10.1103/PHYSREV.176.1496
T. Hamada, I.D. Johnston, A potential model representation of two-nucleon data below 315 MeV Nuclear Physics. ,vol. 34, pp. 382- 403 ,(1962) , 10.1016/0029-5582(62)90228-6
N.G. Van Kampen, A simplified cluster expansion for the classical real gas Physica. ,vol. 27, pp. 783- 792 ,(1961) , 10.1016/0031-8914(61)90097-0
Roderick V Reid, Local phenomenological nucleon-nucleon potentials Annals of Physics. ,vol. 50, pp. 411- 448 ,(1968) , 10.1016/0003-4916(68)90126-7
B. D. DAY, ELEMENTS OF THE BRUECKNER--GOLDSTONE THEORY OF NUCLEAR MATTER. Reviews of Modern Physics. ,vol. 39, pp. 719- 744 ,(1967) , 10.1103/REVMODPHYS.39.719