Wild topology, hyperbolic geometry and fusion algebra of high energy particle physics

作者: M.S. El Naschie

DOI: 10.1016/S0960-0779(01)00242-9

关键词: Quantum gravityCharge (physics)AlgebraCoupling constantPhysicsOperator algebraKnot theoryTopologyHyperbolic geometryHigh energy particleGeometry and topology

摘要: Abstract The relation between Wild Topology, Hyperbolic Geometry and Fusion Algebra on the one side charge coupling constants of standard model quantum gravity other is examined. close connection found E (∞) theory Topological four manifolds as well fundamental groups elucidated using various classical theories recent results due to Antoine, Wada, Alexander, Klein, Kummer, Freedman, Kaufmann, Witten, Jones Connes.

参考文章(13)
M.S. El Naschie, A general theory for the topology of transfinite heterotic strings and quantum gravity Chaos, Solitons & Fractals. ,vol. 12, pp. 969- 988 ,(2001) , 10.1016/S0960-0779(00)00263-0
John von Neumann, Continuous Geometry ,(1981)
VladimirG. Boltjanskij, Anschauliche kombinatorische Topologie Vieweg+Teubner Verlag. ,(1986) , 10.1007/978-3-322-87601-0
Michael H. Freedman, Frank Quinn, Topology of 4-manifolds ,(1990)
M. S. El Naschie, Superstrings, Knots, and Noncommutative Geometry in \(E^{{\text{(}}\infty {\text{)}}} \) Space International Journal of Theoretical Physics. ,vol. 37, pp. 2935- 2951 ,(1998) , 10.1023/A:1026679628582
R. H. Bing, A homogeneous indecomposable plane continuum Duke Mathematical Journal. ,vol. 15, pp. 729- 742 ,(1948) , 10.1215/S0012-7094-48-01563-4
J. W. Alexander, An Example of a Simply Connected Surface Bounding a Region which is not Simply Connected Proceedings of the National Academy of Sciences. ,vol. 10, pp. 8- 10 ,(1924) , 10.1073/PNAS.10.1.8
C. Blanchet, N. Habegger, G. Masbaum, P. Vogel, Topological Auantum Field Theories derived from the Kauffman bracket Topology. ,vol. 34, pp. 883- 927 ,(1995) , 10.1016/0040-9383(94)00051-4