作者: Grzegorz Litak , Marek Borowiec , Arkadiusz Syta , Kazimierz Szabelski
DOI: 10.1016/J.CHAOS.2007.10.041
关键词: Nonlinear system 、 Homoclinic bifurcation 、 Forcing (recursion theory) 、 Double-well potential 、 Mathematics 、 Parametric statistics 、 Chaotic 、 Classical mechanics 、 Excited state 、 Energy (signal processing)
摘要: Abstract We examine the Melnikov criterion for a global homoclinic bifurcation and possible transition to chaos in case of single degree freedom nonlinear oscillator with symmetric double well potential. The system was subjected simultaneously parametric periodic forcing self-excitation via negative damping term. Detailed numerical studies confirm analytical predictions show that transitions from regular chaotic types motion are often associated increasing energy an its escape well.