PULSATING FEEDBACK CONTROL FOR STABILIZING UNSTABLE PERIODIC ORBITS IN A NONLINEAR OSCILLATOR WITH A NONSYMMETRIC POTENTIAL

作者: Grzegorz Litak , L. M. Saha , M. Ali

DOI: 10.1142/S0218127407018774

关键词:

摘要: We examine a strange chaotic attractor and its unstable periodic orbits in case of one-degree freedom nonlinear oscillator with nonsymmetric potential. propose an efficient method chaos control stabilizing these by pulsating feedback technique. Discrete set pulses enable us to transfer the system from one state another.

参考文章(20)
Julien Clinton Sprott, Chaos and time-series analysis ,(2001)
Jitao Sun, Yinping Zhang, Fei Qiao, Qidi Wu, Some impulsive synchronization criterions for coupled chaotic systems via unidirectional linear error feedback approach Chaos Solitons & Fractals. ,vol. 19, pp. 1049- 1055 ,(2004) , 10.1016/S0960-0779(03)00264-9
Jitao Sun, Yinping Zhang, Qidi Wu, Impulsive control for the stabilization and synchronization of Lorenz systems Physics Letters A. ,vol. 298, pp. 153- 160 ,(2002) , 10.1016/S0375-9601(02)00466-8
I. Stewart, T. Poston, R. H. Plaut, Catastrophe theory and its applications ,(1978)
Grzegorz Litak, Arkadiusz Syta, Marek Borowiec, None, Suppression of chaos by weak resonant excitations in a non-linear oscillator with a non-symmetric potential Chaos, Solitons & Fractals. ,vol. 32, pp. 694- 701 ,(2007) , 10.1016/J.CHAOS.2005.11.026
Alexander L. Fradkov, Robin J. Evans, Control of chaos: Methods and applications in engineering Annual Reviews in Control. ,vol. 29, pp. 33- 56 ,(2005) , 10.1016/J.ARCONTROL.2005.01.001
G. Rega, A. Salvatori, F. Benedettini, Numerical and geometrical analysis of bifurcation and chaos for an asymmetric elastic nonlinear oscillator Nonlinear Dynamics. ,vol. 7, pp. 249- 272 ,(1995) , 10.1007/BF00053711
Tao Yang, Chun-Mei Yang, Lin-Bao Yang, Control of Rössler system to periodic motions using impulsive control methods Physics Letters A. ,vol. 232, pp. 356- 361 ,(1997) , 10.1016/S0375-9601(97)00408-8
G. Osipov, L. Glatz, H. Troger, Suppressing chaos in the duffing oscillator by impulsive actions Chaos Solitons & Fractals. ,vol. 9, pp. 307- 321 ,(1998) , 10.1016/S0960-0779(97)00069-6