Suppression of chaos by weak resonant excitations in a non-linear oscillator with a non-symmetric potential

作者: Grzegorz Litak , Arkadiusz Syta , Marek Borowiec , None

DOI: 10.1016/J.CHAOS.2005.11.026

关键词:

摘要: Abstract We examine the Melnikov criterion for transition to chaos in case of one degree freedom non-linear oscillator with non-symmetric potential. This system, when subjected an external periodic force, shows homoclinic from regular vibrations just before escape a potential well. focus especially on effect second resonant excitation different phase system chaos. propose way its control.

参考文章(17)
J. Warmiński, R. Rusinek, Vibrations of Rayleigh-Mathieu oscillator with quadratic elasticity characteristic Folia Societatis Scientiarum Lublinensis. ,vol. 9, pp. 142- 151 ,(2000)
Kazimierz Szabelski, The vibrations of self-excited system with parametric excitation and non-symmetric elasticity characteristic Journal of Theoretical and Applied Mechanics. ,vol. 29, pp. 57- 81 ,(1991)
Hongjun Cao, Xuebin Chi, Guanrong Chen, Suppressing or inducing chaos in a model of robot arms and mechanical manipulators Journal of Sound and Vibration. ,vol. 271, pp. 705- 724 ,(2004) , 10.1016/S0022-460X(03)00382-1
Stefano Lenci, Giuseppe Rega, Global optimal control and system-dependent solutions in the hardening Helmholtz–Duffing oscillator Chaos Solitons & Fractals. ,vol. 21, pp. 1031- 1046 ,(2004) , 10.1016/S0960-0779(03)00387-4
I. Stewart, T. Poston, R. H. Plaut, Catastrophe theory and its applications ,(1978)
R. CHACÓN, F. PALMERO, F. BALIBREA, TAMING CHAOS IN A DRIVEN JOSEPHSON JUNCTION International Journal of Bifurcation and Chaos. ,vol. 11, pp. 1897- 1909 ,(2001) , 10.1142/S0218127401003073
G. Rega, A. Salvatori, F. Benedettini, Numerical and geometrical analysis of bifurcation and chaos for an asymmetric elastic nonlinear oscillator Nonlinear Dynamics. ,vol. 7, pp. 249- 272 ,(1995) , 10.1007/BF00053711