Complete populations of virtual patients for in silico clinical trials.

作者: S Sinisi , V Alimguzhin , T Mancini , E Tronci , B Leeners

DOI: 10.1093/BIOINFORMATICS/BTAA1026

关键词: Artificial intelligenceMachine learningPrecision medicineVirtual patientIn silico clinical trialsUniversity hospitalComputer scienceClinical trialRepresentativeness heuristicPopulation

摘要: MOTIVATION Model-based approaches to safety and efficacy assessment of pharmacological drugs, treatment strategies, or medical devices (In Silico Clinical Trial, ISCT) aim decrease time cost for the needed experimentations, reduce animal human testing, enable precision medicine. Unfortunately, in presence non-identifiable models (e.g., reaction networks), parameter estimation is not enough generate complete populations Virtual Patient (VPs), i.e., guaranteed show entire spectrum model behaviours (phenotypes), thus ensuring representativeness trial. RESULTS We present methods software based on global search driven by statistical checking that, starting from a (non-identifiable) quantitative physiology (plus drugs PK/PD) suitable biological knowledge elicited experts, compute population VPs whose are representative whole phenotypes entailed (completeness) pairwise distinguishable according user-provided criteria. This enables full granularity control size employ an ISCT, guaranteeing while avoiding over-representation behaviours.We proved effectiveness our algorithm ODE-based female Hypothalamic-Pituitary-Gonadal axis, generating 4 830 264 stratified into 7 levels (at different behaviours), assessed its against 86 retrospective health records Pfizer, Hannover Medical School University Hospital Lausanne. The datasets respectively covered within Average Normalised Mean Absolute Error 15%, 20%, 35% (90% latter dataset 20% error).

参考文章(32)
Partha Pratim Roy, Kunal Roy, Molecular docking and QSAR studies of aromatase inhibitor androstenedione derivatives Journal of Pharmacy and Pharmacology. ,vol. 62, pp. 1717- 1728 ,(2010) , 10.1111/J.2042-7158.2010.01154.X
D. Teutonico, F. Musuamba, H. J. Maas, A. Facius, S. Yang, M. Danhof, O. Della Pasqua, Generating Virtual Patients by Multivariate and Discrete Re-Sampling Techniques Pharmaceutical Research. ,vol. 32, pp. 3228- 3237 ,(2015) , 10.1007/S11095-015-1699-X
Antonio Fabregat, Konstantinos Sidiropoulos, Phani Garapati, Marc Gillespie, Kerstin Hausmann, Robin Haw, Bijay Jassal, Steven Jupe, Florian Korninger, Sheldon McKay, Lisa Matthews, Bruce May, Marija Milacic, Karen Rothfels, Veronica Shamovsky, Marissa Webber, Joel Weiser, Mark Williams, Guanming Wu, Lincoln Stein, Henning Hermjakob, Peter D'Eustachio, The Reactome Pathway Knowledgebase. Nucleic Acids Research. ,vol. 44, pp. 472- 477 ,(2014) , 10.1093/NAR/GKV1351
Nicolas Le Novère, Quantitative and logic modelling of molecular and gene networks Nature Reviews Genetics. ,vol. 16, pp. 146- 158 ,(2015) , 10.1038/NRG3885
Robert L. Hester, Alison J. Brown, Leland Husband, Radu Iliescu, Drew Pruett, Richard Summers, Thomas G. Coleman, HumMod: A Modeling Environment for the Simulation of Integrative Human Physiology. Frontiers in Physiology. ,vol. 2, pp. 12- 12 ,(2011) , 10.3389/FPHYS.2011.00012
Desheng Zheng, Guowu Yang, Xiaoyu Li, Zhicai Wang, Feng Liu, Lei He, An Efficient Algorithm for Computing Attractors of Synchronous And Asynchronous Boolean Networks PLoS ONE. ,vol. 8, pp. e60593- ,(2013) , 10.1371/JOURNAL.PONE.0060593
Lieke G.E. Cox, Sandra Loerakker, Marcel C.M. Rutten, Bas A.J.M. de Mol, Frans N. van de Vosse, A mathematical model to evaluate control strategies for mechanical circulatory support. Artificial Organs. ,vol. 33, pp. 593- 603 ,(2009) , 10.1111/J.1525-1594.2009.00755.X
Susanna Röblitz, Claudia Stötzel, Peter Deuflhard, Hannah M. Jones, David-Olivier Azulay, Piet H. van der Graaf, Steven W. Martin, A mathematical model of the human menstrual cycle for the administration of GnRH analogues Journal of Theoretical Biology. ,vol. 321, pp. 8- 27 ,(2013) , 10.1016/J.JTBI.2012.11.020