Cobinamide production of hydrogen in a homogeneous aqueous photochemical system, and assembly and photoreduction in a (βα)8 protein.

作者: Wesley D. Robertson , Adonis M. Bovell , Kurt Warncke

DOI: 10.1007/S00775-013-1015-3

关键词: Aqueous solutionPhotochemistryCorrinPopulationTurnover numberCobaltHydrideHomogeneous catalysisTIM barrelChemistry

摘要: Components of a protein-integrated, earth-abundant metal macrocycle catalyst, with the purpose H2 production from aqueous protons under green conditions, are characterized. The cobalt–corrin complex, cobinamide, is demonstrated to produce (4.4 ± 1.8 × 10−3 turnover number per hour) in homogeneous, photosensitizer/sacrificial electron donor system pure water at neutral pH. Turnover proposed be limited by relatively low population gateway cobalt(III) hydride species. A heterolytic mechanism for cobalt(II) proposed. Two essential requirements assembly functional protein–catalyst complex interaction cobinamide (βα)8 TIM barrel protein, EutB, adenosylcobalamin-dependent ethanolamine ammonia lyase Salmonella typhimurium: (1) high-affinity equilibrium binding (dissociation constant 2.1 × 10−7 M) and (2) situ photoreduction cobinamide–protein Co(I) state. Molecular modeling cobinamide–EutB shows that these features arise specific hydrogen-bond apolar interactions protein alkylamide substituents ring corrin, accessibility site solution. results establish as platform design engineering robust metallocatalyst operates conditions uses advantages tunable medium material support.

参考文章(86)
Ruma Banerjee, Chemistry and biochemistry of B12 Wiley. ,(1999)
Stefan Wiese, Uriah J. Kilgore, Daniel L. DuBois, R. Morris Bullock, [Ni(PMe2NPh2)2](BF4)2 as an Electrocatalyst for H2 Production ACS Catalysis. ,vol. 2, pp. 720- 727 ,(2012) , 10.1021/CS300019H
Nicholas J. Turro, Modern Molecular Photochemistry ,(1978)
Richard Eisenberg, Rethinking Water Splitting Science. ,vol. 324, pp. 44- 45 ,(2009) , 10.1126/SCIENCE.1172247
L R Faust, J A Connor, D M Roof, J A Hoch, B M Babior, Cloning, sequencing, and expression of the genes encoding the adenosylcobalamin-dependent ethanolamine ammonia-lyase of Salmonella typhimurium. Journal of Biological Chemistry. ,vol. 265, pp. 12462- 12466 ,(1990) , 10.1016/S0021-9258(19)38368-1
N. S. Lewis, G. Crabtree, A. J. Nozik, M. R. Wasielewski, P. Alivisatos, H. Kung, J. Tsao, E. Chandler, W. Walukiewicz, M. Spitler, R. Ellingson, R. Overend, J. Mazer, M. Gress, J. Horwitz, C. Ashton, B. Herndon, L. Shapard, R. M. Nault, Basic Research Needs for Solar Energy Utilization: report of the Basic Energy Sciences Workshop on Solar Energy Utilization, April 18-21, 2005 US Department of Energy, Office of Basic Energy Science. ,(2005) , 10.2172/899136
Smaranda C. Marinescu, Jay R. Winkler, Harry B. Gray, Molecular mechanisms of cobalt-catalyzed hydrogen evolution Proceedings of the National Academy of Sciences of the United States of America. ,vol. 109, pp. 15127- 15131 ,(2012) , 10.1073/PNAS.1213442109
Timothy T. Harkins, Charles B. Grissom, The Magnetic Field Dependent Step in B12 Ethanolamine Ammonia Lyase Is Radical-Pair Recombination Journal of the American Chemical Society. ,vol. 117, pp. 566- 567 ,(1995) , 10.1021/JA00106A079
Jacques Moser, Michael Graetzel, Photosensitized electron injection in colloidal semiconductors Journal of the American Chemical Society. ,vol. 106, pp. 6557- 6564 ,(1984) , 10.1021/JA00334A017