作者: C L. Hao , C F. Cui , Y H. Dai , None
DOI: 10.1002/NLA.1949
关键词: Mathematical optimization 、 Applied mathematics 、 Subspace topology 、 Mathematics 、 Eigenvalues and eigenvectors 、 Unit sphere 、 Projection (linear algebra) 、 Optimization problem 、 Projection method 、 Polynomial 、 Rate of convergence
摘要: Z‐eigenvalues of tensors, especially extreme ones, are quite useful and are related to many problems, such as automatic control, quantum physics, and independent component analysis. For supersymmetric tensors, calculating the smallest/largest Z‐eigenvalue is equivalent to solving a global minimization/maximization problem of a homogenous polynomial over the unit sphere. In this paper, we utilize the sequential subspace projection method (SSPM) to find extreme Z‐eigenvalues and the corresponding Z‐eigenvectors. The …