A sequential subspace projection method for extreme Z‐eigenvalues of supersymmetric tensors

作者: C L. Hao , C F. Cui , Y H. Dai , None

DOI: 10.1002/NLA.1949

关键词: Mathematical optimizationApplied mathematicsSubspace topologyMathematicsEigenvalues and eigenvectorsUnit sphereProjection (linear algebra)Optimization problemProjection methodPolynomialRate of convergence

摘要: Z‐eigenvalues of tensors, especially extreme ones, are quite useful and are related to many problems, such as automatic control, quantum physics, and independent component analysis. For supersymmetric tensors, calculating the smallest/largest Z‐eigenvalue is equivalent to solving a global minimization/maximization problem of a homogenous polynomial over the unit sphere. In this paper, we utilize the sequential subspace projection method (SSPM) to find extreme Z‐eigenvalues and the corresponding Z‐eigenvectors. The …

参考文章(18)
Liqun Qi, Kok Lay Teo, Multivariate Polynomial Minimization and Its Application in Signal Processing Journal of Global Optimization. ,vol. 26, pp. 419- 433 ,(2003) , 10.1023/A:1024778309049
Liqun Qi, Eigenvalues and invariants of tensors Journal of Mathematical Analysis and Applications. ,vol. 325, pp. 1363- 1377 ,(2007) , 10.1016/J.JMAA.2006.02.071
Tzu-Chieh Wei, Paul M. Goldbart, Geometric measure of entanglement and applications to bipartite and multipartite quantum states Physical Review A. ,vol. 68, pp. 042307- ,(2003) , 10.1103/PHYSREVA.68.042307
Liqun Qi, Fei Wang, Yiju Wang, Z-eigenvalue methods for a global polynomial optimization problem Mathematical Programming. ,vol. 118, pp. 301- 316 ,(2009) , 10.1007/S10107-007-0193-6
Tong Zhang, Gene H. Golub, Rank-One Approximation to High Order Tensors SIAM Journal on Matrix Analysis and Applications. ,vol. 23, pp. 534- 550 ,(2001) , 10.1137/S0895479899352045
Lixing Han, An unconstrained optimization approach for finding real eigenvalues of even order symmetric tensors Numerical Algebra, Control and Optimization. ,vol. 3, pp. 583- 599 ,(2013) , 10.3934/NACO.2013.3.583
Lieven De Lathauwer, Bart De Moor, Joos Vandewalle, On the Best Rank-1 and Rank-(R1 ,R2 ,. . .,RN) Approximation of Higher-Order Tensors SIAM Journal on Matrix Analysis and Applications. ,vol. 21, pp. 1324- 1342 ,(2000) , 10.1137/S0895479898346995
B. N. Khoromskij, V. Khoromskaia, Multigrid Accelerated Tensor Approximation of Function Related Multidimensional Arrays SIAM Journal on Scientific Computing. ,vol. 31, pp. 3002- 3026 ,(2009) , 10.1137/080730408
Yu-Hong Dai, Fast Algorithms for Projection on an Ellipsoid Siam Journal on Optimization. ,vol. 16, pp. 986- 1006 ,(2006) , 10.1137/040613305
Liqun Qi, Gaohang Yu, Ed X. Wu, Higher Order Positive Semidefinite Diffusion Tensor Imaging SIAM Journal on Imaging Sciences. ,vol. 3, pp. 416- 433 ,(2010) , 10.1137/090755138