Accurate Interactive Visualization of Large Deformations and Variability in Biomedical Image Ensembles

作者: Max Hermann , Anja C. Schunke , Thomas Schultz , Reinhard Klein

DOI: 10.1109/TVCG.2015.2467198

关键词: Shape analysis (digital geometry)Image warpingComputer graphicsComputer scienceCreative visualizationInteractive visual analysisInterpolationImage processingInteractive visualizationArtificial intelligenceVisualizationImage scalingRendering (computer graphics)Computer vision

摘要: Large image deformations pose a challenging problem for the visualization and statistical analysis of 3D ensembles which have multitude applications in biology medicine. Simple linear interpolation tangent space ensemble introduces artifactual anatomical structures that hamper application targeted visual shape techniques. In this work we make use theory stationary velocity fields to facilitate interactive non-linear plausible extrapolation high quality rendering large devise an efficient warping method on GPU. This does not only improve existing techniques, but opens up field novel methods analysis. Taking advantage warping, showcase four visualizations: 1) browsing on-the-fly computed group mean shapes learn about differences between specific classes, 2) reformation investigate complex morphologies single view, 3) likelihood volumes gain concise overview variability 4) streamline show variation detail, specifically uncovering its component tangential reference surface. Evaluation real world dataset shows presented outperforms state-of-the-art terms while retaining frame rates. A case study with domain expert was performed are applied standard model structures, namely skull mandible different rodents, compare influence phylogeny, diet geography shape. The visualizations enable instance distinguish (population-)normal pathological morphology, assist correlation extrinsic factors potentially support assessment quality.

参考文章(46)
Hans Lamecker, Peter Deuflhard, Thomas Lange, Hans-Christian Hege, Martin Seebass, Visualization of the Variability of 3D Statistical Shape Models by Animation Studies in health technology and informatics. ,vol. 98, pp. 190- 196 ,(2004)
S. Busking, Visualization of Variation and Variability TU Delft, Delft University of Technology. ,(2014) , 10.4233/UUID:96610558-5D81-4A0A-B9DC-5E59B8214B29
Nicholas J. Higham, Functions of Matrices Philadelphia, PA, USA: Society for Industrial and Applied Mathematics; 2008.. ,(2008) , 10.1137/1.9780898717778
Michael Gleicher, Tom Brunet, K. Evan Nowak, Integrating dynamic deformations into interactive volume visualization ieee vgtc conference on visualization. pp. 219- 226 ,(2006) , 10.2312/VISSYM/EUROVIS06/219-226
Matias Bossa, Monica Hernandez, Salvador Olmos, Contributions to 3D diffeomorphic atlas estimation: application to brain images medical image computing and computer assisted intervention. ,vol. 10, pp. 667- 674 ,(2007) , 10.1007/978-3-540-75757-3_81
Vincent Arsigny, Olivier Commowick, Xavier Pennec, Nicholas Ayache, A Log-Euclidean Framework for Statistics on Diffeomorphisms Medical Image Computing and Computer-Assisted Intervention – MICCAI 2006. ,vol. 9, pp. 924- 931 ,(2006) , 10.1007/11866565_113
Tom Vercauteren, Xavier Pennec, Aymeric Perchant, Nicholas Ayache, Symmetric Log-Domain Diffeomorphic Registration: A Demons-Based Approach Medical Image Computing and Computer-Assisted Intervention – MICCAI 2008. ,vol. 11, pp. 754- 761 ,(2008) , 10.1007/978-3-540-85988-8_90
Paul Klemm, Steffen Oeltze-Jafra, Kai Lawonn, Katrin Hegenscheid, Henry Volzke, Bernhard Preim, Interactive Visual Analysis of Image-Centric Cohort Study Data. IEEE Transactions on Visualization and Computer Graphics. ,vol. 20, pp. 1673- 1682 ,(2014) , 10.1109/TVCG.2014.2346591
Jan Kretschmer, Grzegorz Soza, Christian Tietjen, Michael Suehling, Bernhard Preim, Marc Stamminger, ADR--Anatomy-Driven Reformation. IEEE Transactions on Visualization and Computer Graphics. ,vol. 20, pp. 2496- 2505 ,(2014) , 10.1109/TVCG.2014.2346405
Christof Seiler, Xavier Pennec, Mauricio Reyes, Capturing the multiscale anatomical shape variability with polyaffine transformation trees Medical Image Analysis. ,vol. 16, pp. 1371- 1384 ,(2012) , 10.1016/J.MEDIA.2012.05.011