Visualizing Shape Deformations with Variation of Geometric Spectrum

作者: Jiaxi Hu , Hajar Hamidian , Zichun Zhong , Jing Hua

DOI: 10.1109/TVCG.2016.2598790

关键词:

摘要: This paper presents a novel approach based on spectral geometry to quantify and visualize non-isometric deformations of 3D surfaces by mapping two manifolds. The proposed method can determine multi-scale, through the variation Laplace-Beltrami spectrum shapes. Given triangle meshes, spectra be varied from one another with scale function defined each vertex. is expressed as linear interpolation eigenvalues In iteration step, quadratic programming problem constructed, our derived theorem smoothness energy constraint, compute variation. derivation solution such problem. Therefore, final solved integral which, in turn, quantitatively describes between To evaluate method, we conduct extensive experiments synthetic real data. We employ epilepsy patient imaging data shape left right hippocampi epileptic brains. addition, use longitudinal Alzheimer compare deformation diseased healthy hippocampus. order show accuracy effectiveness also it spatial registration-based methods, e.g., non-rigid Iterative Closest Point (ICP) voxel-based method. These demonstrate advantages

参考文章(45)
Yonggang Shi, Rongjie Lai, Raja Gill, Daniel Pelletier, David Mohr, Nancy Sicotte, Arthur W. Toga, Conformal Metric Optimization on Surface (CMOS) for Deformation and Mapping in Laplace-Beltrami Embedding Space Lecture Notes in Computer Science. ,vol. 14, pp. 327- 334 ,(2011) , 10.1007/978-3-642-23629-7_40
Wei Zeng, Lok Ming Lui, Lin Shi, Defeng Wang, Winnie CW Chu, Jack CY Cheng, Jing Hua, Shing-Tung Yau, Xianfeng Gu, None, Shape Analysis of Vestibular Systems in Adolescent Idiopathic Scoliosis Using Geodesic Spectra Medical Image Computing and Computer-Assisted Intervention – MICCAI 2010. ,vol. 13, pp. 538- 546 ,(2010) , 10.1007/978-3-642-15711-0_67
E. Rodolà, L. Cosmo, M. M. Bronstein, A. Torsello, D. Cremers, Partial Functional Correspondence Computer Graphics Forum. ,vol. 36, pp. 222- 236 ,(2017) , 10.1111/CGF.12797
Michael I. Miller, J. Tilak Ratnanather, Daniel J. Tward, Timothy Brown, David S. Lee, Michael Ketcha, Kanami Mori, Mei-Cheng Wang, Susumu Mori, Marilyn S. Albert, Laurent Younes, , Network Neurodegeneration in Alzheimer's Disease via MRI Based Shape Diffeomorphometry and High-Field Atlasing. Frontiers in Bioengineering and Biotechnology. ,vol. 3, pp. 54- 54 ,(2015) , 10.3389/FBIOE.2015.00054
Raif M. Rustamov, Laplace-Beltrami eigenfunctions for deformation invariant shape representation symposium on geometry processing. pp. 225- 233 ,(2007) , 10.5555/1281991.1282022
Max Hermann, Anja C. Schunke, Thomas Schultz, Reinhard Klein, Accurate Interactive Visualization of Large Deformations and Variability in Biomedical Image Ensembles IEEE Transactions on Visualization and Computer Graphics. ,vol. 22, pp. 708- 717 ,(2016) , 10.1109/TVCG.2015.2467198
Artiom Kovnatsky, Michael M. Bronstein, Xavier Bresson, Pierre Vandergheynst, Functional correspondence by matrix completion computer vision and pattern recognition. pp. 905- 914 ,(2015) , 10.1109/CVPR.2015.7298692
A. Kovnatsky, M. M. Bronstein, A. M. Bronstein, K. Glashoff, R. Kimmel, Coupled Quasi-harmonic Bases Computer Graphics Forum. ,vol. 32, pp. 439- 448 ,(2013) , 10.1111/CGF.12064
B. Levy, Laplace-Beltrami Eigenfunctions Towards an Algorithm That "Understands" Geometry ieee international conference on shape modeling and applications. pp. 13- 13 ,(2006) , 10.1109/SMI.2006.21