Sequential Quadratic Programming Methods for Nonlinear Programming

作者: Philip E. Gill , Walter Murray , Michael A. Saunders , Margaret H. Wright

DOI: 10.1007/978-3-642-52465-3_23

关键词: Augmented Lagrangian methodMathematical optimizationActive set methodSecond-order cone programmingNonlinear programmingFractional programmingSequential quadratic programmingQuadratically constrained quadratic programQuadratic programmingComputer science

摘要: Sequential quadratic programming (SQP) methods are among the most effective techniques known today for solving nonlinearly constrained optimization problems. This paper presents an overview of SQP based on a quasi-Newton approximation to Hessian Lagrangian function (or augmented function). We briefly describe some issues in formulation methods, including form subproblem and choice merit function. conclude with list available software.

参考文章(45)
R. M. Chamberlain, M. J. D. Powell, C. Lemarechal, H. C. Pedersen, The watchdog technique for forcing convergence in algorithms for constrained optimization Mathematical Programming Studies. pp. 1- 17 ,(1982) , 10.1007/BFB0120945
M. J. D. Powell, A fast algorithm for nonlinearly constrained optimization calculations Springer Berlin Heidelberg. pp. 144- 157 ,(1978) , 10.1007/BFB0067703
Walter Murray, Margaret H. Wright, Computation of the search direction in constrained optimization algorithms Mathematical Programming Studies. pp. 62- 83 ,(1982) , 10.1007/BFB0120948
D. Q. Mayne, E. Polak, A surperlinearly convergent algorithm for constrained optimization problems Mathematical Programming Studies. pp. 45- 61 ,(1982) , 10.1007/BFB0120947
Philip E. Gill, William Allan Murray, Numerical methods for constrained optimization Academic Press. ,(1974)
M. J. D. Powell, Variable Metric Methods for Constrained Optimization Mathematical Programming The State of the Art. pp. 288- 311 ,(1983) , 10.1007/978-3-642-68874-4_12
Robert B Schnabel, JE Dennis Jr, COLORADO UNIV AT BOULDER DEPT OF COMPUTER SCIENCE, A NEW DERIVATION OF SYMMETRIC POSITIVE DEFINITE SECANT UPDATES Nonlinear Programming 4#R##N#Proceedings of the Nonlinear Programming Symposium 4 Conducted by the Computer Sciences Department at the University of Wisconsin–Madison, July 14–16, 1980. pp. 167- 199 ,(1980) , 10.1016/B978-0-12-468662-5.50012-4