On the relations between discriminant analysis and multilayer perceptrons

作者: P. Gallinari , S. Thiria , F. Badran , F. Fogelman-Soulie

DOI: 10.1016/0893-6080(91)90071-C

关键词: Set (abstract data type)Artificial neural networkGeneric propertyExtension (predicate logic)Linear discriminant analysisComputer scienceNonlinear systemPerceptronAlgorithm

摘要: Abstract We study the relations between discriminant analysis and multilayer perceptrons used for classification tasks. first consider linear networks prove formal equivalence two techniques in this case. then present a set of experiments on problems with increasing degree nonlinearity. This allows to extension result nonlinear nets investigate data transformations successive layers these nets. Finally, we show evidence generic properties MLPs classifiers.

参考文章(14)
Yann Le Cun, Modèles connexionnistes de l'apprentissage Intellectica. ,vol. 2, pp. 114- 143 ,(1987) , 10.3406/INTEL.1987.1804
S. Thiria, F. Fogelman Soulie, P. Gallinari, Y. Le Cun, EVALUATION OF NETWORK ARCHITECTURES ON TEST LEARNING TASKS. ,(1987)
G. W. Cottrell, Image compression by back-propagation: An example of extensional programming Advances in Congnitive Science. ,vol. 3, pp. 208- 240 ,(1988)
David E. Rumelhart, James L. McClelland, , Parallel distributed processing: explorations in the microstructure of cognition, vol. 1: foundations Computational Models of Cognition and Perception. ,(1986) , 10.7551/MITPRESS/5236.001.0001
Ken-Ichi Funahashi, On the approximate realization of continuous mappings by neural networks Neural Networks. ,vol. 2, pp. 183- 192 ,(1989) , 10.1016/0893-6080(89)90003-8
R. A. FISHER, THE USE OF MULTIPLE MEASUREMENTS IN TAXONOMIC PROBLEMS Annals of Human Genetics. ,vol. 7, pp. 179- 188 ,(1936) , 10.1111/J.1469-1809.1936.TB02137.X
H. Bourlard, Y. Kamp, Auto-association by multilayer perceptrons and singular value decomposition Biological Cybernetics. ,vol. 59, pp. 291- 294 ,(1988) , 10.1007/BF00332918
Gallinari, Thiria, Soulie, Multilayer perceptrons and data analysis IEEE 1988 International Conference on Neural Networks. pp. 391- 399 ,(1988) , 10.1109/ICNN.1988.23871