Thermospheric atomic hydrogen densities and fluxes from dayside Lyman /α measurements

作者: James Bishop

DOI: 10.1016/S1364-6826(00)00211-X

关键词: HydrogenSatelliteZenithAtmosphereSolar maximumAtmospheric sciencesFlux (metallurgy)Parametric modelRange (particle radiation)Computational physics

摘要: Abstract Knowledge of the atomic hydrogen density profile ([H]( z )) in upper atmosphere is important both for studies mesospheric–lower thermospheric (MLT) chemistry and determining thermospheric–lower exospheric densities needed realistic modeling geocoronal ballistic flux distributions. Early work reviewed sparseness relevant data on variation [H] with altitude emphasized. While optical measurements (e.g., Lyman α ) constitute most practical approach currently available, analysis requires radiative transport (RT) [H]( retrieval effectively limited to obtaining values a small number parameters. The key physical parameters interest are exobase c , photochemically initiated upward φ at mesospheric peak . This paper discusses RT-modeling dayside disk–to–limb scanning intensity (4π I couched terms these parameters, aided by use physically motivated parametric model overcoming MSIS limitations MLT altitudes. Illustrative sensitivity study results under solar maximum conditions presented. directly impacts 4π profiles over wide range zenith angles such conditions. mild difficulties unraveling efforts may arise, 4 π expected from several future satellite FUV instruments should permit determination much dayside.

参考文章(37)
A. E. Hedin, Extension of the MSIS Thermosphere Model into the middle and lower atmosphere Journal of Geophysical Research. ,vol. 96, pp. 1159- 1172 ,(1991) , 10.1029/90JA02125
H. Takahashi, B. R. Clemesha, Y. Sahai, P. P. Batista, D. M. Simonich, Seasonal variations of mesospheric hydrogen and ozone concentrations derived from ground‐based airglow and lidar observations Journal of Geophysical Research. ,vol. 97, pp. 5987- 5993 ,(1992) , 10.1029/91JD03015
James R. Stallcop, Harry Partridge, Stephen P. Walch, Eugene Levin, H–N2 interaction energies, transport cross sections, and collision integrals Journal of Chemical Physics. ,vol. 97, pp. 3431- 3436 ,(1992) , 10.1063/1.463956
H. C. Brinton, H. G. Mayr, W. E. Potter, Winter bulge and diurnal variations in hydrogen inferred from AE‐C composition measurements Geophysical Research Letters. ,vol. 2, pp. 389- 392 ,(1975) , 10.1029/GL002I009P00389
J. Bishop, J. Harlander, S. Nossal, F.L. Roesler, Analysis of Balmer α intensity measurements near solar minimum Journal of Atmospheric and Solar-Terrestrial Physics. ,vol. 63, pp. 341- 353 ,(2001) , 10.1016/S1364-6826(00)00212-1
S. C. Liu, T. M. Donahue, Mesospheric Hydrogen Related to Exospheric Escape Mechanisms Journal of the Atmospheric Sciences. ,vol. 31, pp. 1466- 1470 ,(1974) , 10.1175/1520-0469(1974)031<1466:MHRTEE>2.0.CO;2
A. E. Dessler, E. M. Weinstock, E. J. Hintsa, J. G. Anderson, C. R. Webster, R. D. May, J. W. Elkins, G. S. Dutton, An examination of the total hydrogen budget of the lower stratosphere Geophysical Research Letters. ,vol. 21, pp. 2563- 2566 ,(1994) , 10.1029/94GL02283
G.E. Thomas, A. Vidal-Madjar, Latitude variations of exospheric hydrogen and the polar wind Planetary and Space Science. ,vol. 26, pp. 873- 882 ,(1978) , 10.1016/0032-0633(78)90110-1
A. Vidal-Madjar, The Earth hydrogen exobase near a solar minimum Geophysical Research Letters. ,vol. 5, pp. 29- 32 ,(1978) , 10.1029/GL005I001P00029
Martin G. Mlynczak, Daniel K. Zhou, Steven M. Adler-Golden, Kinetic and spectroscopic requirements for the inference of chemical heating rates and atomic hydrogen densities from OH Meinel band measurements Geophysical Research Letters. ,vol. 25, pp. 647- 650 ,(1998) , 10.1029/98GL00325