Adams operators and knot decorations

作者: A. K. Aiston

DOI:

关键词: Quantum invariantSkeinQuantum groupFundamental representationRepresentation ringFinite type invariantMathematicsPower seriesKnot (mathematics)Pure mathematics

摘要: We use an explicit isomorphism from the representation ring of quantum group U_q(sl(N)) to Homfly skein annulus, determine element which is image mth Adams operator, \psi_m, on fundamental representation, c_1. This a linear combination m very simple m-string braids. Using this element, we show that Vassiliev invariant degree n in power series expansion knot coloured by \psi_m(c_1) canonical with weight system W_n\psi_m^{(n)} where W_n for c_1 and \psi_m^{(n)} operator n-chord diagrams defined Bar-Natan.

参考文章(20)
Jun Murakami, Tu Quoc Thang Le, The universal Vassiliev-Kontsevich invariant for framed oriented links Compositio Mathematica. ,vol. 102, pp. 41- 64 ,(1996)
Hermann Weyl, The Classical Groups The Mathematical Gazette. ,vol. 24, pp. 216- ,(1947) , 10.1515/9781400883905
William Fulton, Joe Harris, Representation Theory: A First Course ,(1991)
A. K. Aiston, A skein theoretic proof of the hook formula for quantum dimension arXiv: Quantum Algebra. ,(1997)
Jim Hoste, Mark E. Kidwell, Dichromatic link invariants Transactions of the American Mathematical Society. ,vol. 321, pp. 197- 229 ,(1990) , 10.1090/S0002-9947-1990-0961623-2
G Lusztig, Quantum deformations of certain simple modules over enveloping algebras Advances in Mathematics. ,vol. 70, pp. 237- 249 ,(1988) , 10.1016/0001-8708(88)90056-4
ELSAYED A. ELRIFAI, H. R. MORTON, ALGORITHMS FOR POSITIVE BRAIDS Quarterly Journal of Mathematics. ,vol. 45, pp. 479- 497 ,(1994) , 10.1093/QMATH/45.4.479
V. F. R. Jones, Hecke algebra representations of braid groups and link polynomials Annals of Mathematics. ,vol. 126, pp. 335- 388 ,(1987) , 10.2307/1971403
V. G. Turaev, The Yang-Baxter equation and invariants of links Inventiones Mathematicae. ,vol. 92, pp. 527- 553 ,(1988) , 10.1007/BF01393746