Axiomatic and numerical conjoint measurement: An evaluation of diagnostic efficacy

作者: Douglas R. Emery , F. Hutton Barron

DOI: 10.1007/BF02293971

关键词: AxiomOrdinal dataAdditive modelData miningDistributive propertyPolynomialSynthetic dataMathematical modelMathematical optimizationMathematicsStatistic

摘要: Synthetic data are used to examine how well axiomatic and numerical conjoint measurement methods, individually comparatively, recover simple polynomial generators in three dimensions. The study illustrates extensions of (NCM) identify model distributive dual-distributive, addition the usual additive, structures. It was found that while minimum STRESS criterion fit, another statistic, predictive capability, provided a better diagnosis known generating model. That NCM methods were able models conflicts with Krantz Tversky's assertion that, general, direct axiom tests provide more powerful diagnostic test between alternative composition rules than does evaluation correspondence. For all dual-distributive most difficult recover, consistent past studies, additive is robust fitted models.

参考文章(21)
J. B. Kruskal, Analysis of Factorial Experiments by Estimating Monotone Transformations of the Data Journal of the Royal Statistical Society: Series B (Methodological). ,vol. 27, pp. 251- 263 ,(1965) , 10.1111/J.2517-6161.1965.TB01492.X
Gregory W. Fischer, Multidimensional utility models for risky and riskless choice Organizational Behavior and Human Performance. ,vol. 17, pp. 127- 146 ,(1976) , 10.1016/0030-5073(76)90057-X
David H. Krantz, Amos Tversky, Conjoint-measurement analysis of composition rules in psychology. Psychological Review. ,vol. 78, pp. 151- 169 ,(1971) , 10.1037/H0030637
James R. Ullrich, John R. Painter, A conjoint-measurement analysis of human judgment Organizational Behavior and Human Performance. ,vol. 12, pp. 50- 61 ,(1974) , 10.1016/0030-5073(74)90036-1
Paul D. Isaac, David D. S. Poor, On the determination of appropriate dimensionality in data with error Psychometrika. ,vol. 39, pp. 91- 109 ,(1974) , 10.1007/BF02291579
Charles R. Sherman, Nonmetric multidimensional scaling: A monte carlo study of the basic parameters Psychometrika. ,vol. 37, pp. 323- 355 ,(1972) , 10.1007/BF02306786
Roger N. Shepard, Metric structures in ordinal data Journal of Mathematical Psychology. ,vol. 3, pp. 287- 315 ,(1966) , 10.1016/0022-2496(66)90017-4
Forrest W. Young, Nonmetric multidimensional scaling: Recovery of metric information Psychometrika. ,vol. 35, pp. 455- 473 ,(1970) , 10.1007/BF02291820