A framework for machine-learning-augmented multiscale atomistic simulations on parallel supercomputers

作者: Marco Caccin , Zhenwei Li , James R. Kermode , Alessandro De Vita

DOI: 10.1002/QUA.24952

关键词: PhysicsMassively parallelMolecular dynamicsStatistical physicsPartition (number theory)QuantumOverall efficiencyComputational scienceOptimal scalingPhysical and Theoretical ChemistryAtomic and Molecular Physics, and OpticsCondensed matter physics

摘要: Recent advances in quantum mechanical (QM)-based molecular dynamics (MD) simulations have used machine-learning (ML) to predict, rather than recalculate, QM-accurate forces atomic configurations sufficiently similar previously encountered ones. Here, we discuss how ML approaches can be deployed within large-scale QM/MM materials on massively parallel supercomputers, making QM zones of ≳1000 atoms routinely attainable. We argue that the approach allows computational effort concentrated most chemically active subregions zone, significantly improving overall efficiency simulation. thus propose a novel method partition large regions into multiple subregions, which computed achieve optimal scaling. Then review recently proposed QM/ML MD scheme (Z. Li, J.R. Kermode, A. De Vita Phys. Rev. Lett., 2015, 114, 096405), discussing this could efficiently combined with QM-zone partitioning.

参考文章(35)
Miroslav Fiedler, Algebraic connectivity of graphs Czechoslovak Mathematical Journal. ,vol. 23, pp. 298- 305 ,(1973) , 10.21136/CMJ.1973.101168
J LEE, N HWANG, D LEE, S PARK, A theoretical model for digestive ripening Acta Materialia. ,vol. 55, pp. 5281- 5288 ,(2007) , 10.1016/J.ACTAMAT.2007.05.048
Albert P. Bartók, Michael J. Gillan, Frederick R. Manby, Gábor Csányi, Machine-learning approach for one- and two-body corrections to density functional theory: Applications to molecular and condensed water Physical Review B. ,vol. 88, pp. 054104- ,(2013) , 10.1103/PHYSREVB.88.054104
S. Cereda, P. Tangney, A. De Vita, J. R. Kermode, A first principles based polarizable O(N) interatomic force field for bulk silica. Journal of Chemical Physics. ,vol. 133, pp. 094102- 094102 ,(2010) , 10.1063/1.3475565
Chris-Kriton Skylaris, Peter D. Haynes, Arash A. Mostofi, Mike C. Payne, IntroducingONETEP: Linear-scaling density functional simulations on parallel computers The Journal of Chemical Physics. ,vol. 122, pp. 084119- 084119 ,(2005) , 10.1063/1.1839852
Gabor Csányi, T. Albaret, M. C. Payne, A. De Vita, "Learn on the fly": a hybrid classical and quantum-mechanical molecular dynamics simulation. Physical Review Letters. ,vol. 93, pp. 175503- ,(2004) , 10.1103/PHYSREVLETT.93.175503
Anke Peguiron, Lucio Colombi Ciacchi, Alessandro De Vita, James R. Kermode, Gianpietro Moras, Accuracy of buffered-force QM/MM simulations of silica. Journal of Chemical Physics. ,vol. 142, pp. 064116- ,(2015) , 10.1063/1.4907786
J. R. Kermode, T. Albaret, D. Sherman, N. Bernstein, P. Gumbsch, M. C. Payne, G. Csányi, A. De Vita, Low-speed fracture instabilities in a brittle crystal Nature. ,vol. 455, pp. 1224- 1227 ,(2008) , 10.1038/NATURE07297
Jeffrey C. Grossman, Lubos Mitas, Efficient quantum monte carlo energies for molecular dynamics simulations. Physical Review Letters. ,vol. 94, pp. 056403- ,(2005) , 10.1103/PHYSREVLETT.94.056403
J.R. Kermode, L. Ben-Bashat, F. Atrash, J.J. Cilliers, D. Sherman, A. De Vita, Macroscopic scattering of cracks initiated at single impurity atoms Nature Communications. ,vol. 4, pp. 2441- 2441 ,(2013) , 10.1038/NCOMMS3441