Efficient non-parametric fitting of potential energy surfaces for polyatomic molecules with Gaussian processes

作者: Jie Cui , Roman V Krems

DOI: 10.1088/0953-4075/49/22/224001

关键词:

摘要: We explore the performance of a statistical learning technique based on Gaussian Process (GP) regression as an efficient non-parametric method for constructing multi-dimensional potential energy surfaces (PES) polyatomic molecules. Using example molecule N$_4$, we show that realistic GP model six-dimensional PES can be constructed with only 240 points. construct series models and illustrate convergence accuracy resulting function number ${\it ab \ initio}$ $\sim 1500$ points achieves same level conventional fits 16,421 The requires no fitting data analytical functions readily extended to higher dimensions.

参考文章(34)
Michael L. Stein, Interpolation of Spatial Data Springer New York. ,(1999) , 10.1007/978-1-4612-1494-6
Matthias Rupp, Machine learning for quantum mechanics in a nutshell International Journal of Quantum Chemistry. ,vol. 115, pp. 1058- 1073 ,(2015) , 10.1002/QUA.24954
Marco Caccin, Zhenwei Li, James R. Kermode, Alessandro De Vita, A framework for machine-learning-augmented multiscale atomistic simulations on parallel supercomputers International Journal of Quantum Chemistry. ,vol. 115, pp. 1129- 1139 ,(2015) , 10.1002/QUA.24952
Jie Cui, Zhiying Li, Roman V. Krems, Gaussian process model for extrapolation of scattering observables for complex molecules: From benzene to benzonitrile Journal of Chemical Physics. ,vol. 143, pp. 154101- 154101 ,(2015) , 10.1063/1.4933137
Bastiaan J. Braams, Joel M. Bowman, Permutationally invariant potential energy surfaces in high dimensionality International Reviews in Physical Chemistry. ,vol. 28, pp. 577- 606 ,(2009) , 10.1080/01442350903234923
Crystal Linkletter, Derek Bingham, Nicholas Hengartner, David Higdon, Kenny Q Ye, Variable Selection for Gaussian Process Models in Computer Experiments Technometrics. ,vol. 48, pp. 478- 490 ,(2006) , 10.1198/004017006000000228
Albert P. Bartók, Gábor Csányi, Gaussian approximation potentials: A brief tutorial introduction International Journal of Quantum Chemistry. ,vol. 115, pp. 1051- 1057 ,(2015) , 10.1002/QUA.24927
Toby Mitchell, Max Morris, Donald Ylvisaker, Existence of smoothed stationary processes on an interval Stochastic Processes and their Applications. ,vol. 35, pp. 109- 119 ,(1990) , 10.1016/0304-4149(90)90126-D
Sergei Manzhos, Xiaogang Wang, Richard Dawes, Tucker Carrington, A nested molecule-independent neural network approach for high-quality potential fits. Journal of Physical Chemistry A. ,vol. 110, pp. 5295- 5304 ,(2006) , 10.1021/JP055253Z
Josef Ischtwan, Michael A. Collins, Molecular potential energy surfaces by interpolation Journal of Chemical Physics. ,vol. 100, pp. 8080- 8088 ,(1994) , 10.1063/1.466801