Reconstruction of Low Degree B-spline Surfaces with Arbitrary Topology Using Inverse Subdivision Scheme

作者: Nga Le-Thi-Thu , Khoi Nguyen-Tan , Thuy Nguyen-Thanh

DOI: 10.31130/JST.2017.41

关键词: MathematicsTopology (chemistry)TopologyB-splineScheme (mathematics)SubdivisionDegree (graph theory)Inverse

摘要:

参考文章(13)
Yunhui Xiong, Guiqing Li, Aihua Mao, Computer Graphics in China: Convergence analysis for B-spline geometric interpolation Computers & Graphics. ,vol. 36, pp. 884- 891 ,(2012) , 10.1016/J.CAG.2012.07.002
Matthias Eck, Hugues Hoppe, Automatic reconstruction of B-spline surfaces of arbitrary topological type international conference on computer graphics and interactive techniques. pp. 325- 334 ,(1996) , 10.1145/237170.237271
Chongyang Deng, Weiyin Ma, Weighted progressive interpolation of Loop subdivision surfaces Computer-aided Design. ,vol. 44, pp. 424- 431 ,(2012) , 10.1016/J.CAD.2011.12.001
Chongyang Deng, Hongwei Lin, Progressive and iterative approximation for least squares B-spline curve and surface fitting Computer-aided Design. ,vol. 47, pp. 32- 44 ,(2014) , 10.1016/J.CAD.2013.08.012
Fu-Hua (Frank) Cheng, Feng-Tao Fan, Shu-Hua Lai, Cong-Lin Huang, Jia-Xi Wang, Jun-Hai Yong, Loop subdivision surface based progressive interpolation Journal of Computer Science and Technology. ,vol. 24, pp. 39- 46 ,(2009) , 10.1007/S11390-009-9199-2
Wolfgang Dahmen, Charles A. Micchelli, Hans-Peter Seidel, Blossoming begets B -spline bases built better by B -patches Mathematics of Computation. ,vol. 59, pp. 97- 115 ,(1992) , 10.1090/S0025-5718-1992-1134724-1
Marian Neamtu, Bivariate Simplex B-Splines: A New Paradigm spring conference on computer graphics. pp. 71- 78 ,(2001) , 10.5555/882484.883938
Christopher K. Ingram, A Geometric B-Spline Over the Triangular Domain University of Waterloo. ,(2003)
Takashi Maekawa, Yasunori Matsumoto, Ken Namiki, Interpolation by geometric algorithm Computer-aided Design. ,vol. 39, pp. 313- 323 ,(2007) , 10.1016/J.CAD.2006.12.008