Weighted progressive interpolation of Loop subdivision surfaces

作者: Chongyang Deng , Weiyin Ma

DOI: 10.1016/J.CAD.2011.12.001

关键词:

摘要: This paper proposes a weighted progressive method for constructing Loop subdivision surface interpolating given mesh. The convergent rate of the interpolation can be controlled by adjusting weight iteration. For different weights in available range, limit meshes are same as that reverse solution directly solving linear system. theoretical value optimal is based on smallest eigenvalue collocation matrix. An appropriate assigned both analysis and numerical experiments.

参考文章(25)
H. Suzuki, S. Takeuchi, T. Kanai, Subdivision surface fitting to a range of points pacific conference on computer graphics and applications. pp. 158- 167 ,(1999) , 10.1109/PCCGA.1999.803359
Ahmad H. Nasri, Polyhedral subdivision methods for free-form surfaces ACM Transactions on Graphics. ,vol. 6, pp. 29- 73 ,(1987) , 10.1145/27625.27628
Hongwei LIN, Constructing iterative non-uniform B-spline curve and surface to fit data points Science in China Series F. ,vol. 47, pp. 315- 331 ,(2004) , 10.1360/02YF0529
Hugues Hoppe, Tony DeRose, Tom Duchamp, Mark Halstead, Hubert Jin, John McDonald, Jean Schweitzer, Werner Stuetzle, Piecewise smooth surface reconstruction international conference on computer graphics and interactive techniques. pp. 295- 302 ,(1994) , 10.1145/192161.192233
Zhongxian Chen, Xiaonan Luo, Le Tan, Binghong Ye, Jiapeng Chen, Progressive Interpolation based on Catmull-Clark Subdivision Surfaces Computer Graphics Forum. ,vol. 27, pp. 1823- 1827 ,(2008) , 10.1111/J.1467-8659.2008.01328.X
Shuhua Lai, Fuhua (Frank) Cheng, Similarity based interpolation using Catmull–Clark subdivision surfaces The Visual Computer. ,vol. 22, pp. 865- 873 ,(2006) , 10.1007/S00371-006-0072-9
Lizheng Lu, Weighted progressive iteration approximation and convergence analysis Computer Aided Geometric Design. ,vol. 27, pp. 129- 137 ,(2010) , 10.1016/J.CAGD.2009.11.001
Denis Zorin, Peter Schröder, Wim Sweldens, Interpolating Subdivision for meshes with arbitrary topology international conference on computer graphics and interactive techniques. pp. 189- 192 ,(1996) , 10.1145/237170.237254
E. Catmull, J. Clark, Recursively generated B-spline surfaces on arbitrary topological meshes Computer-aided Design. ,vol. 10, pp. 350- 355 ,(1978) , 10.1016/0010-4485(78)90110-0