Support Vector Machine Optimized by Fireworks Algorithm for Handwritten Digit Recognition

作者: Eva Tuba , Romana Capor Hrosik , Adis Alihodzic , Raka Jovanovic , Milan Tuba

DOI: 10.1007/978-3-030-39237-6_13

关键词: Artificial intelligenceSet (abstract data type)Hyperparameter optimizationBinary classificationMNIST databasePattern recognitionOptimization problemSwarm intelligenceSupport vector machineCognitive neuroscience of visual object recognitionComputer science

摘要: Handwritten digit recognition is an important subarea in the object research area. Support vector machines represent a very successful recent binary classifier. Basic support have to be improved order deal with real-world problems. The introduction of soft margin for outliers and misclassified samples as well kernel function non linearly separably data leads hard optimization problem selecting parameters these two modifications. Grid search which often used rather inefficient. In this paper we propose use one latest swarm intelligence algorithms, fireworks algorithm, machine tuning. We tested our approach on standard MNIST base handwritten images selected set simple features obtained better results compared other approaches from literature.

参考文章(27)
Ângelo Cardoso, Andreas Wichert, Letters: Handwritten digit recognition using biologically inspired features Neurocomputing. ,vol. 99, pp. 575- 580 ,(2013) , 10.1016/J.NEUCOM.2012.07.027
Shaoqiu Zheng, Junzhi Li, Andreas Janecek, Ying Tan, A Cooperative Framework for Fireworks Algorithm IEEE/ACM Transactions on Computational Biology and Bioinformatics. ,vol. 14, pp. 27- 41 ,(2017) , 10.1109/TCBB.2015.2497227
Evangelos Stromatias, Daniel Neil, Francesco Galluppi, Michael Pfeiffer, Shih-Chii Liu, Steve Furber, Live demonstration: Handwritten digit recognition using spiking deep belief networks on SpiNNaker international symposium on circuits and systems. pp. 1901- 1901 ,(2015) , 10.1109/ISCAS.2015.7169034
Ying Tan, Yuanchun Zhu, Fireworks Algorithm for Optimization Lecture Notes in Computer Science. pp. 355- 364 ,(2010) , 10.1007/978-3-642-13495-1_44
Milan Tuba, Nebojsa Bacanin, Marko Beko, Fireworks algorithm for RFID network planning problem international conference radioelektronika. pp. 440- 444 ,(2015) , 10.1109/RADIOELEK.2015.7129049
U. Ravi Babu, Y. Venkateswarlu, Aneel Kumar Chintha, Handwritten Digit Recognition Using K-Nearest Neighbour Classifier international conference on information technology and applications. pp. 60- 65 ,(2014) , 10.1109/WCCCT.2014.7
Ying Tan, Enhanced Fireworks Algorithm congress on evolutionary computation. pp. 2069- 2077 ,(2013) , 10.1007/978-3-662-46353-6_6
S. Impedovo, F.M. Mangini, D. Barbuzzi, A novel prototype generation technique for handwriting digit recognition Pattern Recognition. ,vol. 47, pp. 1002- 1010 ,(2014) , 10.1016/J.PATCOG.2013.04.016
Georgios Vamvakas, Basilis Gatos, Stavros J. Perantonis, Handwritten character recognition through two-stage foreground sub-sampling Pattern Recognition. ,vol. 43, pp. 2807- 2816 ,(2010) , 10.1016/J.PATCOG.2010.02.018