Live demonstration: Handwritten digit recognition using spiking deep belief networks on SpiNNaker

作者: Evangelos Stromatias , Daniel Neil , Francesco Galluppi , Michael Pfeiffer , Shih-Chii Liu

DOI: 10.1109/ISCAS.2015.7169034

关键词:

摘要: We demonstrate an interactive handwritten digit recognition system with a spike-based deep belief network running in real-time on SpiNNaker, biologically inspired many-core architecture. Results show that during the simulation SpiNNaker chip can deliver spikes under 1 μs, classification latency order of tens milliseconds, while consuming less than 0.3 W.

参考文章(3)
Peter O'Connor, Daniel Neil, Shih-Chii Liu, Tobi Delbruck, Michael Pfeiffer, Real-time classification and sensor fusion with a spiking deep belief network Frontiers in Neuroscience. ,vol. 7, pp. 178- 178 ,(2013) , 10.3389/FNINS.2013.00178
Daniel Neil, Shih-Chii Liu, Minitaur, an Event-Driven FPGA-Based Spiking Network Accelerator IEEE Transactions on Very Large Scale Integration Systems. ,vol. 22, pp. 2621- 2628 ,(2014) , 10.1109/TVLSI.2013.2294916
Steve B. Furber, Francesco Galluppi, Steve Temple, Luis A. Plana, The SpiNNaker Project Proceedings of the IEEE. ,vol. 102, pp. 652- 665 ,(2014) , 10.1109/JPROC.2014.2304638