Image-Based ICP Algorithm for Visual Odometry Using a RGB-D Sensor in a Dynamic Environment

作者: Deok-Hwa Kim , Jong-Hwan Kim

DOI: 10.1007/978-3-642-37374-9_41

关键词: Rigid transformationRANSACVisual odometryRGB color modelOutlierSpeedupComputer scienceIterative closest pointAlgorithmFeature (computer vision)Artificial intelligenceComputer vision

摘要: This paper proposes a novel approach to calculate visual odometry using Microsoft Kinect incorporating depth information into RGB color generate 3D feature points based on speed up robust features (SURF) descriptor. In particular, the generated are used for calculating iterative closest point (ICP) algorithm between successive images from sensor. The ICP works image of differently previous approaches. suggests one modified versions state-of-the-art implementation algorithm. Such an makes accurate calculation rigid body transformation matrix in dynamic environment. From this step, dynamically moving can be separated outliers. Then, outliers filtered with random sample consensus (RANSAC) matrix. experiments demonstrate that is successfully obtained proposed

参考文章(11)
Navid Nourani-Vatani, Mandyam V. Srinivasan, Jonathan M. Roberts, IMU aided 3D visual odometry for car-like vehicles international conference on robotics and automation. pp. 1- 8 ,(2008)
Peter Henry, Michael Krainin, Evan Herbst, Xiaofeng Ren, Dieter Fox, RGB-D Mapping: Using Depth Cameras for Dense 3D Modeling of Indoor Environments international symposium on experimental robotics. pp. 477- 491 ,(2014) , 10.1007/978-3-642-28572-1_33
John H. Challis, A procedure for determining rigid body transformation parameters Journal of Biomechanics. ,vol. 28, pp. 733- 737 ,(1995) , 10.1016/0021-9290(94)00116-L
Marco Baglietto, Antonio Sgorbissa, Damiano Verda, Renato Zaccaria, Human navigation and mapping with a 6DOF IMU and a laser scanner Robotics and Autonomous Systems. ,vol. 59, pp. 1060- 1069 ,(2011) , 10.1016/J.ROBOT.2011.08.005
A Hornung, K M Wurm, M Bennewitz, Humanoid robot localization in complex indoor environments intelligent robots and systems. pp. 1690- 1695 ,(2010) , 10.1109/IROS.2010.5649751
Martin A. Fischler, Robert C. Bolles, Random sample consensus: a paradigm for model fitting with applications to image analysis and automated cartography Communications of The ACM. ,vol. 24, pp. 381- 395 ,(1981) , 10.1145/358669.358692
Frank Steinbrucker, Jurgen Sturm, Daniel Cremers, Real-time visual odometry from dense RGB-D images international conference on computer vision. pp. 719- 722 ,(2011) , 10.1109/ICCVW.2011.6130321
Laurent Kneip, Margarita Chli, Roland Siegwart, None, Robust Real-Time Visual Odometry with a Single Camera and an IMU british machine vision conference. pp. 1- 11 ,(2011) , 10.5244/C.25.16
Herbert Bay, Andreas Ess, Tinne Tuytelaars, Luc Van Gool, Speeded-Up Robust Features (SURF) Computer Vision and Image Understanding. ,vol. 110, pp. 346- 359 ,(2008) , 10.1016/J.CVIU.2007.09.014
Andrew J. Davison, Ian D. Reid, Nicholas D. Molton, Olivier Stasse, MonoSLAM: Real-Time Single Camera SLAM IEEE Transactions on Pattern Analysis and Machine Intelligence. ,vol. 29, pp. 1052- 1067 ,(2007) , 10.1109/TPAMI.2007.1049