Galois theory, elliptic curves, and root numbers

作者: David E. Rohrlich

DOI:

关键词: Sato–Tate conjectureMathematicsGalois cohomologyIwasawa theoryGalois extensionDifferential Galois theoryPure mathematicsFundamental theorem of Galois theoryGalois moduleResolvent

摘要: The inverse problem of Galois theory asks whether an arbitrary finite group G can be realized as Gal(K/Q) for some extension K Q. When such a realization has been given particular then natural sequel is to find arithmetical realizations the irreducible representations G. One possibility ask in Mordell-Weil groups elliptic curves over Q: Given complex representation τ Gal(K/Q), does there exist curve E Q that occurs on C ⊗Z E(K)? present paper not attempt investigate this question directly. Instead we adopt Greenberg’s point view his remarks nonabelian Iwasawa [5] and consider related about root numbers. Let ρE denote E(K) 〈τ, ρE〉 multiplicity , write L(E, τ, s) tensor product L-function associated . conjectures Birch-Swinnerton-Dyer Deligne-Gross imply

参考文章(12)
Ralph Greenberg, Non-Vanishing of Certain Values of L -Functions Birkhäuser Boston. pp. 223- 235 ,(1987) , 10.1007/978-1-4612-4816-3_12
David E. Rohrlich, Variation of the root number in families of elliptic curves Compositio Mathematica. ,vol. 87, pp. 119- 151 ,(1993)
Joseph H. Silverman, The Arithmetic of Elliptic Curves ,(1986)
André Weil, Adeles and algebraic groups ,(1982)
Jean-Pierre Serre, John Tate, Good Reduction of Abelian Varieties The Annals of Mathematics. ,vol. 88, pp. 492- ,(1968) , 10.2307/1970722
Jean-Pierre Serre, Propriétés galoisiennes des points d'ordre fini des courbes elliptiques Inventiones Mathematicae. ,vol. 15, pp. 259- 331 ,(1971) , 10.1007/BF01405086
Jean-Pierre Serre, Conducteurs d'Artin des caractères réels Inventiones Mathematicae. ,vol. 14, pp. 173- 183 ,(1971) , 10.1007/BF01418887
A. Fr�hlich, J. Queyrut, On the functional equation of the ArtinL-function for characters of real representations Inventiones Mathematicae. ,vol. 20, pp. 125- 138 ,(1973) , 10.1007/BF01404061
Samuel E. Lamacchia, Polynomials with galois group psl(2,7) Communications in Algebra. ,vol. 8, pp. 983- 992 ,(1980) , 10.1080/00927878008822503