Shear-horizontal surface acoustic wave phononic device with high density filling material for ultra-low power sensing applications

作者: M. Richardson , S. K. R. S. Sankaranarayanan , V. R. Bhethanabotla

DOI: 10.1063/1.4884655

关键词: Finite element methodTungstenMaterials scienceBand gapSurface acoustic waveOptoelectronicsInsertion lossInterference (wave propagation)PhononTantalum

摘要: Finite element simulations of a phononic shear-horizontal surface acoustic wave (SAW) sensor based on ST 90°-X Quartz reveal dramatic reduction in power consumption. The is realized by artificially structuring the delay path to form an meta-material comprised periodic microcavity array incorporating high-density materials such as tantalum or tungsten. Constructive interference scattered and secondary reflected waves at every interface leads energy confinement regions translating into reduced loss. Tantalum filled cavities show best performance while tungsten inclusions create bandgap. Based our simulation results, SAW devices with microcavities were fabricated shown significantly decrease insertion Our findings offer encouraging prospects for designing low power, highly sensitive portable biosensors.

参考文章(15)
Massood Z. Atashbar, Bradley J. Bazuin, M. Simpeh, S. Krishnamurthy, 3D FE simulation of H2 SAW gas sensor Sensors and Actuators B-chemical. ,vol. 111, pp. 213- 218 ,(2005) , 10.1016/J.SNB.2005.06.054
Reetu Singh, Subramanian K. R. S. Sankaranarayanan, Venkat R. Bhethanabotla, Enhanced surface acoustic wave biosensor performance via delay path modifications in mutually interacting multidirectional transducer configuration: A computational study Applied Physics Letters. ,vol. 95, pp. 034101- ,(2009) , 10.1063/1.3184765
M. F. Su, R. H. Olsson, Z. C. Leseman, I. El-Kady, Realization of a phononic crystal operating at gigahertz frequencies Applied Physics Letters. ,vol. 96, pp. 053111- ,(2010) , 10.1063/1.3280376
Friederike J. Gruhl, Michael Rapp, Kerstin Länge, Label-free detection of breast cancer marker HER-2/neu with an acoustic biosensor Procedia Engineering. ,vol. 5, pp. 914- 917 ,(2010) , 10.1016/J.PROENG.2010.09.258
Y. M. Soliman, M. F. Su, Z. C. Leseman, C. M. Reinke, I. El-Kady, R. H. Olsson, Phononic crystals operating in the gigahertz range with extremely wide band gaps Applied Physics Letters. ,vol. 97, pp. 193502- ,(2010) , 10.1063/1.3504701
Thomas M. A. Gronewold, Antje Baumgartner, Eckhard Quandt, Michael Famulok, Discrimination of single mutations in cancer-related gene fragments with a surface acoustic wave sensor. Analytical Chemistry. ,vol. 78, pp. 4865- 4871 ,(2006) , 10.1021/AC060296C
Jun Kondoh, Yusuke Okiyama, Satoru Mikuni, Yoshikazu Matsui, Makoto Nara, Toshimasa Mori, Hiromi Yatsuda, Development of a Shear Horizontal Surface Acoustic Wave Sensor System for Liquids with a Floating Electrode Unidirectional Transducer Japanese Journal of Applied Physics. ,vol. 47, pp. 4065- 4069 ,(2008) , 10.1143/JJAP.47.4065
Kourosh Kalantar-Zadeh, Wojtek Wlodarski, Yuen Y. Chen, Benjamin N. Fry, Kosmas Galatsis, Novel Love mode surface acoustic wave based immunosensors Sensors and Actuators B-chemical. ,vol. 91, pp. 143- 147 ,(2003) , 10.1016/S0925-4005(03)00079-0
R H Olsson III, I El-Kady, Microfabricated phononic crystal devices and applications Measurement Science and Technology. ,vol. 20, pp. 012002- ,(2009) , 10.1088/0957-0233/20/1/012002
Stefan Cular, Subramanian K. R. S. Sankaranarayanan, Venkat R. Bhethanabotla, Enhancing effects of microcavities on shear-horizontal surface acoustic wave sensors: A finite element simulation study Applied Physics Letters. ,vol. 92, pp. 244104- ,(2008) , 10.1063/1.2949553