Nonparametric and Semiparametric Estimation in Complex Surveys

作者: F. Jay Breidt , Jean D. Opsomer

DOI: 10.1016/S0169-7161(09)00227-2

关键词: MathematicsNonparametric regressionRegression diagnosticStatisticsKernel regressionLocal regressionProper linear modelRegression analysisPolynomial regressionSemiparametric regressionEconometrics

摘要: Publisher Summary This chapter focuses on nonparametric and semi-parametric methods in two important statistical areas: estimation of densities regression functions. Both these areas have applications survey estimation, for both descriptive analytical uses. Orthogonal decomposition is a non-parametric method with good properties that applicable situations where the mean function not necessarily smooth. Neural networks are class conceptually related to penalized spline regression, which parameters found by nonlinear regression. The model particularly useful when some covariates data set categorical, definition cannot be smoothed. In addition multivariate data, another extension models more complex structures, including equivalents generalized linear models. Nonparametric require specification one or several smoothing such as bandwidth kernel penalty

参考文章(34)
D. R. Bellhouse, J. E. Stafford, DENSITY ESTIMATION FROM COMPLEX SURVEYS ,(1999)
M. P. Wand, Smoothing and mixed models Computational Statistics. ,vol. 18, pp. 223- 249 ,(2003) , 10.1007/S001800300142
Jean D. Opsomer, F. Jay Breidt, Local polynomial regresssion estimators in survey sampling Annals of Statistics. ,vol. 28, pp. 1026- 1053 ,(2000) , 10.1214/AOS/1015956706
R. L. Chambers, A. H. Dorfman, M. Yu. Sverchkov, NONPARAMETRIC REGRESSION WITH COMPLEX SURVEY DATA John Wiley & Sons, Ltd. pp. 151- 174 ,(2003) , 10.1002/0470867205.CH11
M. Aerts, G. Claeskens, M.P. Wand, Some theory for penalized spline generalized additive models Journal of Statistical Planning and Inference. ,vol. 103, pp. 455- 470 ,(2002) , 10.1016/S0378-3758(01)00237-3
Camelia Goga, Réduction de la variance dans les sondages en présence d'information auxiliarie: Une approache non paramétrique par splines de régression Canadian Journal of Statistics-revue Canadienne De Statistique. ,vol. 33, pp. 163- 180 ,(2005) , 10.1002/CJS.5550330202
Raymond L. Chambers, Alan H. Dorfman, Thomas E. Wehrly, Bias Robust Estimation in Finite Populations Using Nonparametric Calibration Journal of the American Statistical Association. ,vol. 88, pp. 268- 277 ,(1993) , 10.1080/01621459.1993.10594319