Homotopy Theories and Model Categories

作者: W.G. Dwyer , J. Spalinski

DOI: 10.1016/B978-044481779-2/50003-1

关键词: Concrete categoryDiscrete mathematicsComplete categorySimplicial setHomotopy categoryMathematicsHomotopy hypothesisPure mathematicsHigher category theoryClosed categoryModel category

摘要: This chapter explains homotopy theories and model categories. A category is just an ordinary with three specified classes of morphisms—fibrations, cofibrations, weak equivalences—which satisfy a few simple axioms that are deliberately reminiscent the properties topological spaces. Surprisingly enough, these give reasonably general context in which it possible to set up basic machinery theory. The can then be used immediately large number different settings, as long checked each case. Although many settings geometric, some them not. provides background material, principally discussion categorical constructions (limits colimits), come almost any attempt build new objects abstract out old ones. also conceptual interpretation category. Surprisingly, this depends only on class equivalences. suggests category, equivalences carry fundamental theoretic information, while fibrations, they function mostly tools make various constructions.

参考文章(23)
A. K. Bousfield, E. M. Friedlander, Homotopy theory of Γ-spaces, spectra, and bisimplicial sets Springer Berlin Heidelberg. pp. 80- 130 ,(1978) , 10.1007/BFB0068711
Arne Str�m, The homotopy category is a homotopy category Archiv der Mathematik. ,vol. 23, pp. 435- 441 ,(1972) , 10.1007/BF01304912
George W. Whitehead, Homotopy Theory of CW-complexes Springer, New York, NY. pp. 209- 254 ,(1978) , 10.1007/978-1-4612-6318-0_5
Daniel Marinus Kan, Aldridge Knight Bousfield, Homotopy Limits, Completions and Localizations ,(1972)
J.F. Jardine, Homotopy and Homotopical Algebra Handbook of Algebra. ,vol. 1, pp. 639- 669 ,(1996) , 10.1016/S1570-7954(96)80022-2
James R. Munkres, Elements of Algebraic Topology ,(1984)
Peter Gabriel, Michel Zisman, Calculus of fractions and homotopy theory Springer-Verlag. ,(1967) , 10.1007/978-3-642-85844-4
George W. Whitehead, Elements of Homotopy Theory ,(1978)
V. K. A. M. Gugenheim, Aldridge Knight Bousfield, On PL De Rham Theory and Rational Homotopy Type ,(1976)
W.G. Dwyer, D.M. Kan, Equivariant homotopy classification Journal of Pure and Applied Algebra. ,vol. 35, pp. 269- 285 ,(1985) , 10.1016/0022-4049(85)90045-3