Classifying Spaces and Homology Decompositions

作者: W. G. Dwyer

DOI: 10.1007/978-3-0348-8356-6_1

关键词: CohomologyRelative homologyEquivariant mapClassifying spaceHomotopySimplicial complexTopologyHomotopy colimitMathematicsPure mathematicsHomology (mathematics)

摘要: Suppose that G is a finite group. We look at the problem of expressing classifying space BG, up to mod p cohomology, as homotopy colimit spaces smaller groups. A number interesting tools come into play, such simplicial sets and spaces, nerves categories, equivariant theory, transfer.

参考文章(37)
W.G. Dwyer, J. Spalinski, Homotopy Theories and Model Categories Handbook of Algebraic Topology. pp. 73- 126 ,(1995) , 10.1016/B978-044481779-2/50003-1
A. K. Bousfield, Unstable localization and periodicity Algebraic Topology: New Trends in Localization and Periodicity. pp. 33- 50 ,(1996) , 10.1007/978-3-0348-9018-2_3
D. J. Benson, Representations and Cohomology ,(1998)
Daniel Quillen, Higher algebraic K-theory: I Lecture Notes in Mathematics. pp. 85- 147 ,(1973) , 10.1007/BFB0067053
Daniel Marinus Kan, Aldridge Knight Bousfield, Homotopy Limits, Completions and Localizations ,(1972)
James R. Munkres, Elements of Algebraic Topology ,(1984)
Samuel Eilenberg, Norman Earl Steenrod, Foundations of Algebraic Topology ,(1952)
Peter Gabriel, Michel Zisman, Calculus of fractions and homotopy theory Springer-Verlag. ,(1967) , 10.1007/978-3-642-85844-4
Paul G. Goerss, John F. Jardine, Simplicial homotopy theory The Mathematical Gazette. ,vol. 84, pp. 360- ,(1999) , 10.1007/978-3-0346-0189-4