作者: Joachim von zur Gathen , Amin Shokrollahi , Jamshid Shokrollahi
DOI: 10.1007/978-3-540-73074-3_6
关键词: Type (model theory) 、 Product (mathematics) 、 Degree (graph theory) 、 Discrete mathematics 、 Fast Fourier transform 、 Normal basis 、 Inverse 、 Change of basis 、 Combinatorics 、 Factorization 、 Mathematics
摘要: In this paper we propose a new structure for multiplication using optimal normal bases of type 2. The multiplier uses an efficient linear transformation to convert the basis representations elements $\mathbb{F}_{q^{n}}$ suitable polynomials degree at most nover $\mathbb{F}_{q}$. These are multiplied any method which is implementation platform, then product converted back inverse above transformation. efficiency arises from special factorization its matrix into sparse matrices. This -- resembles FFT DFT allows compute and O(nlogn) operations in $\mathbb{F}_{q}$, rather than O(n2) needed general change basis. Using technique can reduce asymptotic cost 2 reported by Gao et al. (2000) M (n) + where number $\mathbb{F}_{q}$-operations multiply two ni¾? 1 over We show that also smaller other proposed multipliers n> 160, values used elliptic curve cryptography.