Efficient Multiplication Using Type 2 Optimal Normal Bases

作者: Joachim von zur Gathen , Amin Shokrollahi , Jamshid Shokrollahi

DOI: 10.1007/978-3-540-73074-3_6

关键词: Type (model theory)Product (mathematics)Degree (graph theory)Discrete mathematicsFast Fourier transformNormal basisInverseChange of basisCombinatoricsFactorizationMathematics

摘要: In this paper we propose a new structure for multiplication using optimal normal bases of type 2. The multiplier uses an efficient linear transformation to convert the basis representations elements $\mathbb{F}_{q^{n}}$ suitable polynomials degree at most nover $\mathbb{F}_{q}$. These are multiplied any method which is implementation platform, then product converted back inverse above transformation. efficiency arises from special factorization its matrix into sparse matrices. This -- resembles FFT DFT allows compute and O(nlogn) operations in $\mathbb{F}_{q}$, rather than O(n2) needed general change basis. Using technique can reduce asymptotic cost 2 reported by Gao et al. (2000) M (n) + where number $\mathbb{F}_{q}$-operations multiply two ni¾? 1 over We show that also smaller other proposed multipliers n> 160, values used elliptic curve cryptography.

参考文章(22)
Jamshid Shokrollahi, Joachim von zur Gathen, Jürgen Teich, Marcus Bednara, Cornelia Grabbe, FPGA designs of parallel high performance GF(2 233 ) multipliers. international symposium on circuits and systems. pp. 268- 271 ,(2003)
Aggelos Kiayias, Moti Yung, Polynomial reconstruction based cryptography selected areas in cryptography. pp. 129- 133 ,(2001) , 10.1007/3-540-45537-X_10
Joachim von zur Gathen, Jamshid Shokrollahi, Efficient FPGA-based karatsuba multipliers for polynomials over F 2 international conference on selected areas in cryptography. pp. 359- 369 ,(2005) , 10.1007/11693383_25
Raymond G. Kammer, William M. Daley, Digital Signature Standard (DSS) ,(2000)
Shuhong Gao, Joachim Von zur gathen, Daniel Panario, Victor Shoup, Algorithms for Exponentiation in Finite Fields Journal of Symbolic Computation. ,vol. 29, pp. 879- 889 ,(2000) , 10.1006/JSCO.1999.0309
Joachim von zur Gathen, Michael Nöcker, Polynomial and Normal Bases for Finite Fields Journal of Cryptology. ,vol. 18, pp. 337- 355 ,(2005) , 10.1007/S00145-004-0221-0
Adrian Kent, Secure Classical Bit Commitment Using Fixed Capacity Communication Channels Journal of Cryptology. ,vol. 18, pp. 313- 335 ,(2005) , 10.1007/S00145-005-0905-8
Shuhong Gao, Hendrik W. Lenstra, Optimal normal bases Designs, Codes and Cryptography. ,vol. 2, pp. 315- 323 ,(1992) , 10.1007/BF00125200